988 resultados para PTP-1B
Resumo:
Hydrogenolysis of mono(cyclopentadienyl)-ligated rare-earth-metal bis(alkyl) complexes Cp'Ln-(CH2SiMe3)2(THF) (Ln = Y (1a), Dy (1b), Lu (1c); Cp' = C5Me4SiMe3) with PhSiH3 afforded the mixed hydride/alkyl complexes [Cp'Ln(mu-H)(CH2SiMe3)(THF)](2) (Ln = Y (2a), Dy (2b), Lu (2c)). The overall structure of complexes 2a-c is a C-2-symmetric dimer containing a planar symmetric Ln(2)H(2) core at the center of the molecule. Deprotonation of ArOH (Ar = C6H2-Bu-t(2)-2,6-Me-4) by the metal alkyl group of 2a-c led to formation of the mixed hydride/aryloxide derivatives [Cp'Ln(mu-H)(OAr)](2) (Ln = Y (3a), Dy (3b), Lu (3c)), which adopt the dimeric structure through hydride bridges with trans-accommodated terminal aryloxide groups.
Resumo:
The syntheses of several dialkyl complexes based on rare-earth metal were described. Three beta-diimine compounds with varying N-aryl substituents (HL1 = (2-CH3O(C6H4))N=C(CH3)CH=C(CH3)NH(2-CH3O(C6H4)), HL2 = (2,4,6-(CH3)(3) (C6H2))N=C(CH3)CH=C(CH3)NH(2,4,6-(CH3)(3)(C6H2)), HL3 = PhN=C(CH3)CH(CH3) NHPh) were treated with Ln(CH2SiMe3)(3)(THF)(2) to give dialkyl complexes L(1)Ln (CH2SiMe3)(2) (Ln = Y (1a), Lu (1b), Sc (1c)), L(2)Ln(CH2SiMe3)(2)(THF) (Ln = Y (2a), Lu (2b)), and (LLu)-Lu-3(CH2SiMe3)(2)(THF) (3). All these complexes were applied to the copolymerization of cyclohexene oxide (CHO) and carbon dioxide as single-component catalysts.
Resumo:
A series of new rare-earth metal bis(alkyl) complexes [L(1-3)Ln(CH2SiMe3)(2)(THF)(n)] (L-1 = MeC4H2SCH2NC6H4(Ph)(2)P=NC6H2Me3-2,4,6: Ln = Sc, n = 1 (1a); Ln = Lu, n = 1 (1b); L-2 = MeC4H2SCH2NC6H4(Ph)(2)P=NC6H3Et2-2,6: Ln = Sc, n = 1 (2a); Ln = Lu, n = 1 (2b); Ln = Y, n = 1 (2c); L-3 = MeC4H2SCH2NC6H4(Ph)(2)P=(NC6H3Pr2)-Pr-i-2,6: Ln = Sc, n = 0 (3a)) and (LSc)-Sc-4(CH2SiMe3)(2()THF) (4a) (L-4 = C6H5CH2NC6H4(Ph)(2)P=NC6H3Et2-2,6) have been prepared by reaction of rare-earth metal tris(alkyl)s with the corresponding HL1-4 ligands via alkane elimination.
Isoprene polymerization with indolide-imine supported rare-earth metal alkyl and amidinate complexes
Resumo:
Reaction of 7-{(N-2,6-R)iminomethyl)}lindole (HL1, R = dimethylphenyl; HL2, R = diisopropylphenyl) and rare-earth metal tris(alkyl)s, Ln(CH2SiMe3)(3)(THF)(2), generated new rare-earth metal bis(alkyl) complexes LLn(CH2SiMe3)(2)(THF) [L = L-1: Ln = Lu. (1a), Sc (1b); L = L-2 : Ln = Lu (3a), Se (3b)] and mono(alkyl) complexes L-2 Lu-2(CH2SiMe3) (4a). Treatment of alkyl complexes 1a and 4a with N,N'-diisopropylcarbodiimide afforded the corresponding amidinates (LLu)-Lu-1{iPr(2)NC(CH2SiMe3) NiPr2}(2) (2a) and L-2 Lu-2{iPr(2)NC(CH2SiMe3)NiPr2} (5a), respectively.
Resumo:
Fluorenyl modified N-heterocyclic carbene ligated rare earth metal bis(alkyl) complexes, (Flu-NHC)Ln(CH2SiMe3)2 (Flu-NHC = (C13H8CH2CH2(NCHCCHN)C6H2Me3-2,4,6); Ln = Sc (1a); Ln = Y (1b); Ln = Ho (1c); Ln = Lit (1d)), were synthesized and fully characterized by NMR and X-ray diffraction analyses. Complexes Ib-d with the activation of (AlBu3)-Bu-i and [Ph3C][B(C6F5)4] exhibited high activity, medium syndio-but remarkably high 3,4-regio-selectivity, and the unprecedented livingness for the polymerization of isoprene. Such distinguished catalytic performances could be maintained under various monomer-to-initiator ratios (500-5000) and broad polymerization temperatures (25-80 degrees C).
Resumo:
Four cyclometalated Pt(II) complexes, i.e., [(L-2)PtCl] (1b), [(L-3)PtCl] (1c), [(L-2)PtC CC6H5] (2b) and [(L-3)PtC CC6H5] (2c) (HL2 = 4-[p-(N-butyl-N-phenyl)anilino]-6-phenyl-2,2'-bipyridine and HL3 = 4-[p(-N,N'-dibutyl-N'-phenyl)phenylene-diamino]-phenyl-6-phenyl-2,2'-bipyridine), have been synthesized and verified by H-1 NMR, C-13 NMR and X-ray crystallography. Unlike previously reported complexes [(L-1)PtCl] (1a) and [(L-1)PtC CC6H5] (2a) (HL1 = 4,6-diphenyl-2,2'-bipyridine), intense and continuous absorption bands in the region of 300-500 nm with strong metal-to-ligand charge transfer ((MLCT)-M-1) (d pi(Pt) -> pi*(L)) transitions (epsilon similar to 2 x 10(4) dm(3) mol (1) cm (1)) at 449-467 nm were observed in the UV-Vis absorption spectra of complexes 1b, 1c, 2b and 2c.
Resumo:
Stoichiometric reactions between mesityl azide (MesN(3), Mes = 2,4,6-C6H2Me3) and amino-phosphine ligated rare-earth metal alkyl, LLn(CH2SiMe3) (2)(THF) (L = (2,6-C6H3Me2)NCH2C6H4P(C6H5)(2); Ln = Lu (1a), Sc (1b)), amide, LLu(NH(2,6-(C6H3Pr2)-Pr-i))(2)(THF) (2) and acetylide at room temperature gave the amino-phosphazide ligated rare-earth metal bis(triazenyl) complexes, [L(MesN(3))]Ln[(MesN(3))-(CH2SiMe3)](2) (Ln = Lu (3a); Sc (3b)), bis(amido) complex [L(MesN3)] Lu[NH(2,6-C6H3 Pr-i(2))](2) (4), and bis(alkynyl) complex (5) (L(MesN(3))Lu (C CPh)(2))(2), respectively. The triazenyl group in 3 coordinates to the metal ion in a rare eta(2)-mode via N-beta and N-gamma atoms, generating a triangular metallocycle. The amino-phosphazide ligand, L(MesN(3)), in 3, 4 and 5 chelates to the metal ion in a eta(3)-mode via N-alpha and N-gamma atoms. In the presence of excess phenylacetylene, complex 3a isomerized to 3', where the triazenyl group coordinates to the metal ion in a eta(3) mode via Na and Ng atoms.
Resumo:
Treatment of anilido-phosphinimine-ligated yttrium mono(alkyl) complex 1a, LY(CH2Si(CH3)(3))(THF) (L = o-(2,6-(C6H3Pr2)-Pr-i)NC6H4P(C6H4)(C6H5)N(2,4,6-C6H2Me3)), with 2 equiv of phenylsilane in DME afforded methoxy-bridged complex 2, [LY(mu-OCH3)](2), via the corresponding hydrido intermediate. When excess isoprene was added to the mixture of la and phenylsilane, a eta(3)-isopentene product, 3, LY(CH2C(CH3)=CHCH3)(THF), was isolated. A lutetium chloride, LLuCl(DME) (4), was generated through the reaction of lutetium mono(alkyl) complex 1b, LLu(CH2Si(CH3)(3))(THF), with [Ph3C]-[B(C6F5)(4)]center dot LiCl accompanied by the formation of [Li(DME)(3)](+)[B(C6F5)(4)](-). Metathesis reaction of 1b with excess AlMe3 at room temperature gave a methyl-terminated counterpart, 5, LLu(CH3)(THF)(2). In all these reactions, the Ln-C-phenyl bonds of complexes 1 remained untouched.
Resumo:
A series of single-component cobalt salen complexes, N,N'-bis(salicylidene)-1,2phenylenediamino cobaltIII X(X = Cl (1a), Br (1b), NO3 (1c), CF3COO (1d), BF4 (le), and N3 (If)) (SalphCoX), were prepared for alternating copolymerization of carbon dioxide and propylene oxide(PO) under mild condition. The axial anion X group of the SalenphCoX played important role in tailoring the catalytic activity, polymeric/cyclic carbonate selectivity, as well as stereochemistry of carbonate unit sequence in the polymer chain. SalenphCoX with an electron-withdrawing axial X group (complex 1c) was an ideal catalyst for the copolymerization of CO2 and PO to selectively produce polycarbonate with similar to 99% carbonate linkage and over 81% head-to-tail structure.
Resumo:
合成并表征了一种新型吡啶双亚胺铁烯烃聚合催化剂2,6-二[1-(4-羟基-2,6-二甲基苯胺)乙基]吡啶氯化铁(1a)。结果表明,在亚胺环的对位引入羟基,可同时提高催化剂的活性和聚合物的分子量。在改性甲基铝氧烷(MMAO)的活化下,该催化剂引发乙烯聚合的活性(以单位时间(h)molFe引发乙烯聚合的PE质量(g)来表征)可达到6.78×106g/(mol.h),明显高于催化剂2,6-二[1-(2,6-二甲基苯胺)乙基]吡啶氯化铁(1b),且能得到更高分子量的聚乙烯。
Resumo:
The N,N- bidentate ligands 2- {( N- 2,6- R) iminomethyl)} pyrrole ( HL1, R) dimethylphenyl; HL2, R) diisopropylphenyl) have been prepared. HL1 reacted readily with 1 equiv of lanthanide tris( alkyl)s, Ln(CH2SiMe3)(3)(THF)(2), affording lanthanide bis(alkyl) complexes L(1)Ln(CH2SiMe3)(2)(THF)(n) (1a, Ln= Lu, n = 2; 1b, Ln = Sc, n = 1) via alkane elimination. Reaction of the bulky ligand HL2 with 1 equiv of Ln(CH2SiMe3)(3)( THF)(2) gave the bis(pyrrolylaldiminato) lanthanide mono(alkyl) complexes L(2)(2)Ln- (CH2SiMe3)(THF) (2a, Ln) Lu; 2b, Ln = Sc), selectively. The N,N- bidentate ligand HL3, 2- dimethylaminomethylpyrrole, reacted with Ln( CH2SiMe3) 3( THF) 2, generating bimetallic bis( alkyl) complexes of central symmetry ( 3a, Ln = Y; 3b, Ln = Lu; 3c, Ln = Sc). Treatment of the N,N,N,N- tetradentate ligand H2L4, 2,2'-bis(2,2-dimethylpropyldiimino) methylpyrrole, with equimolar Lu(CH2SiMe3)(3)(THF)(2) afforded a C-2- symmetric binuclear complex ( 4). Complexes 3a, 3b, 3c, and 4 represent rare examples of THF- free binuclear lanthanide bis( alkyl) complexes supported by non- cyclopentadienyl ligands. All complexes have been tested as initiators for the polymerization of isoprene in the presence of AlEt3 and [ Ph3C][B(C6F5)(4)]. Complexes 1a, 1b, and 3a show activity, and 1b is the most active initiator, whereas 2a, 2b, 3b, 3c, and 4 are inert.
Resumo:
Anilido phosphinimino ancillary ligand H2L1 reacted with one equivalent of rare earth metal trialkyl [Ln{CH2Si(CH3)(3)}(3)(thf)(2)] (Ln = Y, Lu) to afford rare earth metal monoalkyl complexes [L(1)LnCH(2)Si(CH3)(3)(THF)] (1a: Ln = Y; 1b: Ln = Lu). In this process, deprotonation of H2L1 by one metal alkyl species was followed by intramolecular C-H activation of the phenyl group of the phosphine moiety to generate dianionic species L-1 with release of two equivalnts of tetramethylsilane. Ligand L-1 coordinates to Ln(3+) ions in a rare C,N,N tridentate mode. Complex 1a reacted readily with two equivalents of 2,6-diisopropylaniline to give the corresponding bis-amido complex [(HL1)LnY(NHC(6)H(3)iPr(2)-2,6)(2)] (2) selectively, that is, the C-H activation of the phenyl group is reversible. When 1a was exposed to moisture, the hydrolyzed dimeric complex [{(HL1)Y(OH)}(2)](OH)(2) (3) was isolated. Treatment of [Ln{CH2Si(CH3)(3)}(3)-(thf)(2)] with amino phosphine ligands HL2-R gave stable rare earth metal bisalkyl complexes [(L2-R)Ln{CH2Si(CH3)(3)}(2)(thf)] (4a: Ln=Y, R=Me; 4b: Ln=Lu, R=Me; 4c: Ln=Y, R=iPr; 4d: Ln=Y, R=iPr) in high yields. No proton abstraction from the ligand was observed. Amination of 4a and 4c with 2,6-diisopropylaniline afforded the bis-amido counterparts [(L2-R)Y(NHC(6)H(3)iPr(2)-2,6)(2)(thf)] (5a: R=Me; 5b: R=iPr).
Resumo:
3-[Bis(ethylthio)methylene]pentane-2,4-dione (1a) and 3-[bis(benzylthio)methylene]pentane-2,4-dione (1b) have been investigated as non-thiolic and odorless thiol equivalents in thia-Michael addition reactions. In the presence of aqueous p-dodecyl benzenesulfonic acid (DBSA), compound (1) was cleaved and the generated thiols underwent facile conjugate addition to alpha,beta-unsaturated ketones 2 in-situ, affording the corresponding beta-keto sulfides (3) in good yields.
Resumo:
通过邻苯二胺衍生物和八水合环己六酮反应,设计合成了一系列三亚吡嗪稠环化合物。通过紫外-可见吸收光谱、荧光光谱和电化学循环伏安法测试技术考察了芳香取代基对这类分子的光谱性质和能带结构的影响。结果发现,芴和甲氧基苯芳香基团的引入使三亚吡嗪化合物的接收电子能力显著提高,LUMO能级从化合物1a的-3.50 eV降低到化合物1b的-3.68 eV和化合物1c的-3.66 eV,并伴随着吸收光谱和荧光光谱的显著红移,最大吸收和发射峰从化合物1a的413和432 nm红移到化合物1b的460和543 nm以及化合物1c的479和552 nm。同时,大尺寸芳香取代基的引入有效抑制了由于分子聚集而引起的荧光淬灭,使三亚吡嗪化合物的荧光量子效率从化合物1a的0.23提高到化合物1b的0.81和化合物1c的0.87。
Resumo:
Reactions of [ Cp(2)Ln(mu-Cl)](2) (Cp = eta(5)-C5H5, Ln = Nd, Yb, Dy, Gd, Er) with an equivalent of [ (THF)(3)LiE2C2B10H10Li. (TT-IF) (THF)](2) (E = S, Se) in THF afforded the dinuclear sandwich complexes of formula[Cp(2)LnE(2)C(2)B(10)H(10)](2)[Li(THF)(4)](2) [E = S, Ln = Nd (1a), Yb (2a), Dy (3a), Gd (4a), Er (5a); E = Se, Ln = Nd (1b), Yb (2b), Dy (3b), Gd (4b), Er (5b)]. The molecular structures of complexes la, 2a and 2b were determined by the single crystal X-ray structure analyses. Two lanthanide atoms are connected by a pair chalcogen (eta(1), eta(2)-E2C2B10H10) bridging ligands and the central Ln(2)E(2) four membered ring is not planar.