994 resultados para PERMEABLE REACTIVE BARRIER


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of roughening and functionalization processes involved in modifying the wettability of poly(e-caprolactone) (PCL) after treatment by an atmospheric pressure glow discharge plasma is discussed. The change in the ratio of Cdouble bond; length as m-dashO/C–O bonds is a significant factor influencing the wettability of PCL. As the contact angle decreases, the level of Cdouble bond; length as m-dashO bonds tends to rise. Surface roughness alterations are the driving force for lasting increases in wettability, while the surface functional species are shorter lived. We can approximate from ageing that the increase in wettability for PCL after plasma treatment is 55–60% due to roughening and 40–45% due to surface functionalization for the plasma device investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To study some of the interfacial properties of PtSi/Si diodes, Schottky structures were fabricated on (100) crystalline silicon substrates by conventional thermal evaporation of Pt on Si followed by annealing at different temperatures (from 400 degrees C to 700 degrees C) to form PtSi. The PtSi/n-Si diodes, all yielded Schottky barrier (SB) heights that are remarkably temperature dependent. The temperature range (20-290 K) over which the I-V characteristics were measured in the present study is broader with a much lower limit (20 K), than what is usually reported in literature. These variations in the barrier height are adequately interpreted by introducing spatial inhomogeneity into the barrier potential with a Gaussian distribution having a mean barrier of 0.76 eV and a standard deviation of 30 meV. Multi-frequency capacitance-voltage measurements suggest that the barrier is primarily controlled by the properties of the silicide-silicon interface. The forward C-V characteristics, in particular, show small peaks at low frequencies that can be ascribed to interface states rather than to a series resistance effect.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A force field model of the Keating type supplemented by rules to break, form, and interchange bonds is applied to investigate thermodynamic and structural properties of the amorphous SiO2 surface. A simulated quench from the liquid phase has been carried out for a silica sample made of 3888 silicon and 7776 oxygen atoms arranged on a slab similar to 40 angstrom thick, periodically repeated along two directions. The quench results into an amorphous sample, exposing two parallel square surfaces of similar to 42 nm(2) area each. Thermal averages computed during the quench allow us to determine the surface thermodynamic properties as a function of temperature. The surface tension turns out to be gamma=310 +/- 20 erg/cm(2) at room temperature and gamma=270 +/- 30 at T=2000 K, in fair agreement with available experimental estimates. The entropy contribution Ts-s to the surface tension is relatively low at all temperatures, representing at most similar to 20% of the surface energy. Almost without exceptions, Si atoms are fourfold coordinated and oxygen atoms are twofold coordinated. Twofold and threefold rings appear only at low concentration and are preferentially found in proximity of the surface. Above the glass temperature T-g=1660 +/- 50 K, the mobility of surface atoms is, as expected, slightly higher than that of bulk atoms. The computation of the height-height correlation function shows that the silica surface is rough in the equilibrium and undercooled liquid phase, becoming smooth below the glass temperature T-g.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissociative electron attachment to the highly reactive difluoromethylene molecule, CF2, produced in a C3F6/He microwave plasma and stepwise via the fast atom reaction CF3I+H?CF3+HI and CF3+H?CF2+HF, has been investigated. The upper limit for the cross section of formation of F- via dissociative electron attachment to CF2 is estimated to be 5×10-4?Å2. This value is four orders of magnitude smaller than the cross section previously predicted from scattering calculations. It is concluded that difluoromethylene plays a negligible role in negative ion formation in fluorocarbon plasmas.