943 resultados para PASTE ELECTRODES
Resumo:
In recent work (Int. J. Mass Spec., vol. 282, pp. 112–122) we have considered the effect of apertures on the fields inside rf traps at points on the trap axis. We now complement and complete that work by considering off-axis fields in axially symmetric (referred to as “3D”) and in two dimensional (“2D”) ion traps whose electrodes have apertures, i.e., holes in 3D and slits in 2D. Our approximation has two parts. The first, EnoAperture, is the field obtained numerically for the trap under study with apertures artificially closed. We have used the boundary element method (BEM) for obtaining this field. The second part, EdueToAperture, is an analytical expression for the field contribution of the aperture. In EdueToAperture, aperture size is a free parameter. A key element in our approximation is the electrostatic field near an infinite thin plate with an aperture, and with different constant-valued far field intensities on either side. Compact expressions for this field can be found using separation of variables, wherein the choice of coordinate system is crucial. This field is, in turn, used four times within our trap-specific approximation. The off-axis field expressions for the 3D geometries were tested on the quadrupole ion trap (QIT) and the cylindrical ion trap (CIT), and the corresponding expressions for the 2D geometries were tested on the linear ion trap (LIT) and the rectilinear ion trap (RIT). For each geometry, we have considered apertures which are 10%, 30%, and 50% of the trap dimension. We have found that our analytical correction term EdueToAperture, though based on a classical small-aperture approximation, gives good results even for relatively large apertures.
Resumo:
The gas-diffusion layer (GDL) influences the performance of electrodes employed with polymer electrolyte fuel cells (PEFCs). A simple and effective method for incorporating a porous structure in the electrode GDL using sucrose as the pore former is reported. Optimal (50 w/o) incorporation of a pore former in the electrode GDL facilitates the access of the gaseous reactants to the catalyst sites and improves the fuel cell performance. Data obtained from permeability and porosity measurements, single-cell performance, and impedance spectroscopy suggest that an optimal porosity helps mitigating mass-polarization losses in the fuel cell resulting in a substantially enhanced performance.
Resumo:
The “distractor-frequency effect” refers to the finding that high-frequency (HF) distractor words slow picture naming less than low-frequency distractors in the picture–word interference paradigm. Rival input and output accounts of this effect have been proposed. The former attributes the effect to attentional selection mechanisms operating during distractor recognition, whereas the latter attributes it to monitoring/decision mechanisms operating on distractor and target responses in an articulatory buffer. Using high-density (128-channel) EEG, we tested hypotheses from these rival accounts. In addition to conducting stimulus- and response-locked whole-brain corrected analyses, we investigated the correct-related negativity, an ERP observed on correct trials at fronto-central electrodes proposed to reflect the involvement of domain general monitoring. The wholebrain ERP analysis revealed a significant effect of distractor frequency at inferior right frontal and temporal sites between 100 and 300-msec post-stimulus onset, during which lexical access is thought to occur. Response-locked, region of interest (ROI) analyses of fronto-central electrodes revealed a correct-related negativity starting 121 msec before and peaking 125 msec after vocal onset on the grand averages. Slope analysis of this component revealed a significant difference between HF and lowfrequency distractor words, with the former associated with a steeper slope on the time windowspanning from100 msec before to 100 msec after vocal onset. The finding of ERP effects in time windows and components corresponding to both lexical processing and monitoring suggests the distractor frequency effect is most likely associated with more than one physiological mechanism.
Resumo:
Conventional invasive coronary angiography is the clinical gold standard for detecting of coronary artery stenoses. Noninvasive multidetector computed tomography (MDCT) in combination with retrospective ECG gating has recently been shown to permit visualization of the coronary artery lumen and detection of coronary artery stenoses. Single photon emission tomography (SPECT) perfusion imaging has been considered the reference method for evaluation of nonviable myocardium, but magnetic resonance imaging (MRI) can accurately depict structure, function, effusion, and myocardial viability, with an overall capacity unmatched by any other single imaging modality. Magnetocardiography (MCG) provides noninvasively information about myocardial excitation propagation and repolarization without the use of electrodes. This evolving technique may be considered the magnetic equivalent to electrocardiography. The aim of the present series of studies was to evaluate changes in the myocardium assessed with SPECT and MRI caused by coronary artery disease, examine the capability of multidetector computed tomography coronary angiography (MDCT-CA) to detect significant stenoses in the coronary arteries, and MCG to assess remote myocardial infarctions. Our study showed that in severe, progressing coronary artery disease laser treatment does not improve global left ventricular function or myocardial perfusion, but it does preserve systolic wall thickening in fixed defects (scar). It also prevents changes from ischemic myocardial regions to scar. The MCG repolarization variables are informative in remote myocardial infarction, and may perform as well as the conventional QRS criteria in detection of healed myocardial infarction. These STT abnormalities are more pronounced in patients with Q-wave infarction than in patients with non-Q-wave infarctions. MDCT-CA had a sensitivity of 82%, a specificity of 94%, a positive predictive value of 79%, and a negative predictive value of 95% for stenoses over 50% in the main coronary arteries as compared with conventional coronary angiography in patients with known coronary artery disease. Left ventricular wall dysfunction, perfusion defects, and infarctions were detected in 50-78% of sectors assigned to calcifications or stenoses, but also in sectors supplied by normally perfused coronary arteries. Our study showed a low sensitivity (sensitivity 63%) in detecting obstructive coronary artery disease assessed by MDCT in patients with severe aortic stenosis. Massive calcifications complicated correct assessment of the lumen of coronary arteries.
Resumo:
Gelatin hydrogel electrolytes (GHEs) with varying NaCl concentrations have been prepared by cross-linking an aqueous solution of gelatin with aqueous glutaraldehyde and characterized by scanning electron microscopy, differential scanning calorimetry, cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic chronopotentiometry. Glass transition temperatures for GHEs range between 339.6 and 376.9 K depending on the dopant concentration. Ionic conductivity behavior of GHEs was studied with varying concentrations of gelatin, glutaraldehyde, and NaCl, and found to vary between 10(-3) and 10(-1) S cm(-1). GHEs have a potential window of about 1 V. Undoped and 0.25 N NaCl-doped GHEs follow Arrhenius equations with activation energy values of 1.94 and 1.88 x 10(-4) eV, respectively. Electrochemical supercapacitors (ESs) employing these GHEs in conjunction with Black Pearl Carbon electrodes are assembled and studied. Optimal values for capacitance, phase angle, and relaxation time constant of 81 F g(-1), 75 degrees, and 0.03 s are obtained for 3 N NaCl-doped GHE, respectively. ES with pristine GHE exhibits a cycle life of 4.3 h vs 4.7 h for the ES with 3 N NaCl-doped GHE. (c) 2007 The Electrochemical Society.
Resumo:
Based on the measurements of Alcock and Zador, Grundy et al. estimated an uncertainty of the order of +/- 5 kJ mol(-1) for the standard Gibbs energy of formation of MnO in a recent assessment. Since the evaluation of thermodynamic data for the higher oxides Mn3O4, Mn2O3, and MnO2 depends on values for MnO, a redetermination of its Gibbs energy of formation was undertaken in the temperature range from 875 to 1300 K using a solid-state electrochemical cell incorporating yttria-doped thoria (YDT) as the solid electrolyte and Fe + Fe1-delta O as the reference electrode. The cell can be presented as Pt, Mn + MnO/YDT/Fe + Fe1+delta O, Pt Since the metals Fe and Mn undergo phase transitions in the temperature range of measurement, the reversible emf of the cell is represented by the three linear segments. Combining the emf with the oxygen potential for the reference electrode, the standard Gibbs energy of formation of MnO from alpha-Mn and gaseous diatomic oxygen in the temperature range from 875 to 980 K is obtained as: Delta G(f)(o)/Jmol(-1)(+/- 250) = -385624 + 73.071T From 980 to 1300 K the Gibbs energy of formation of MnO from beta-Mn and oxygen gas is given by: Delta G(f)(o)/Jmol(-1)(+/- 250) = -387850 + 75.36T The new data are in excellent agreement with the earlier measurements of Alcock and Zador. Grundy et al. incorrectly analyzed the data of Alcock and Zador showing relatively large difference (+/- 5 kJ mol(-1)) in Gibbs energies of MnO from their two cells with Fe + Fe1-delta O and Ni + NiO as reference electrodes. Thermodynamic data for MnO is reassessed in the light of the new measurements. A table of refined thermodynamic data for MnO from 298.15 to 2000 K is presented.
Resumo:
A Finite Element Method based forward solver is developed for solving the forward problem of a 2D-Electrical Impedance Tomography. The Method of Weighted Residual technique with a Galerkin approach is used for the FEM formulation of EIT forward problem. The algorithm is written in MatLAB7.0 and the forward problem is studied with a practical biological phantom developed. EIT governing equation is numerically solved to calculate the surface potentials at the phantom boundary for a uniform conductivity. An EIT-phantom is developed with an array of 16 electrodes placed on the inner surface of the phantom tank filled with KCl solution. A sinusoidal current is injected through the current electrodes and the differential potentials across the voltage electrodes are measured. Measured data is compared with the differential potential calculated for known current and solution conductivity. Comparing measured voltage with the calculated data it is attempted to find the sources of errors to improve data quality for better image reconstruction.
Resumo:
Fe-doped tungsten oxide thin films with different concentrations (0 to 2.6 at%) were synthesized on glass and alumina substrates at room temperature using DC reactive sputtering and subsequently annealed at 300oC for 1 hour in air. The alumina substrate has pre-printed interdigitated Pt-electrodes for gas sensing measurements. The effects of Fe-doping on the film structure and morphology, electronic and optical properties for gas sensing were investigated. The grain size of the different films on the alumina and Pt regions of the substrate vary only slightly between 43-57 nm with median size of about 50 nm. Raman spectra showed that the integrated intensity of W=O to O–W–O bands increases with increasing Fe concentrations and this indicated an increase in the number of defects. From XPS the different concentrations of the Fe-doped films were 0.03 at%, 1.33 at% and 2.6 at%. All the films deposited on glass substrate have shown similar visible transmittance (about 70%) but the optical band gap of the pure film decreased form 3.30 eV to 3.15 eV after doping with 2.6 at% Fe. The Fe-doped WO3 film with the highest Fe concentration (2.6 at% Fe) has shown an enhanced gas sensing properties to NO2 at relatively lower operating temperature (150oC) and this can be attributed to the decrease in the optical band gap and an increase in the number of defects compared to the pure WO3 film.
Resumo:
A simple analog instrumentation for Electrical Impedance Tomography is developed and calibrated using the practical phantoms. A constant current injector consisting of a modified Howland voltage controlled current source fed by a voltage controlled oscillator is developed to inject a constant current to the phantom boundary. An instrumentation amplifier, 50 Hz notch filter and a narrow band pass filter are developed and used for signal conditioning. Practical biological phantoms are developed and the forward problem is studied to calibrate the EIT-instrumentation. An array of sixteen stainless steel electrodes is developed and placed inside the phantom tank filled with KCl solution. 1 mA, 50 kHz sinusoidal current is injected at the phantom boundary using adjacent current injection protocol. The differential potentials developed at the voltage electrodes are measured for sixteen current injections. Differential voltage signal is passed through an instrumentation amplifier and a filtering block and measured by a digital multimeter. A forward solver is developed using Finite Element Method in MATLAB7.0 for solving the EIT governing equation. Differential potentials are numerically calculated using the forward solver with a simulated current and bathing solution conductivity. Measured potential data is compared with the differential potentials calculated for calibrating the instrumentation to acquire the voltage data suitable for better image reconstruction.
Resumo:
There has been increasing interest on various properties and applications of electronically conducting polymers. Polyethylenedioxythiophene (PEDOT) is an interesting polymer of this type as it exhibits very high ionic conductivity. In the present study, PEDOT has been electrochemically deposited on stainless steel (SS) substrate for supercapacitor studies. PEDOT/SS electrodes prepared in 0.1M H2SO4 in presence of a surfactant, sodium dodecylsulphate (SDS), have been found to yield higher specific capacitance (SC) than the electrodes prepared from neutral aqueous electrolyte. The effects of concentration of H(2)SO4(,) concentration of SDS, potential of deposition, and nature of supporting electrolytes used for capacitor studies on SC of the PEDOT/SS electrodes have been studied. SC values as high as 250 F/g in 1M oxalic acid have been obtained during the initial stages of cycling. However, there is a rapid decrease in SC on repeated charge-discharge cycling. Spectroscopic data reflect structural changes in PEDOT on extended cycling. (C) 2007 Wiley Periodicals, Inc.
Resumo:
16-electrode phantoms are developed and studied with a simple instrumentation developed for Electrical Impedance Tomography. An analog instrumentation is developed with a sinusoidal current generator and signal conditioner circuit. Current generator is developed withmodified Howland constant current source fed by a voltage controlled oscillator and the signal conditioner circuit consisting of an instrumentation amplifier and a narrow band pass filter. Electronic hardware is connected to the electrodes through a DIP switch based multiplexer module. Phantoms with different electrode size and position are developed and the EIT forward problem is studied using the forward solver. A low frequency low magnitude sinusoidal current is injected to the surface electrodes surrounding the phantom boundary and the differential potential is measured by a digital multimeter. Comparing measured potential with the simulated data it is intended to reduce the measurement error and an optimum phantom geometry is suggested. Result shows that the common mode electrode reduces the common mode error of the EIT electronics and reduces the error potential in the measured data. Differential potential is reduced up to 67 mV at the voltage electrode pair opposite to the current electrodes. Offset potential is measured and subtracted from the measured data for further correction. It is noticed that the potential data pattern depends on the electrode width and the optimum electrode width is suggested. It is also observed that measured potential becomes acceptable with a 20 mm solution column above and below the electrode array level.
Resumo:
Uniform field steady-state ionization currents were measured in dry air as a function of N at constant E/N (E is the electric field strength and N the gas number density) and constant electrode separation d for 14·13 × 10-16 less-than-or-eq, slant E/N less-than-or-eq, slant 282·5 × 10-16 V cm2. Uniform field sparking potentials were also measured for Nd range 1·24 × 1016 less-than-or-eq, slant Nd less-than-or-eq, slant 245 × 1016 cm-2. The ratio of the Townsend primary ionization coefficient α to N, α/N, was found to depend on E/N only. The secondary coefficients were also evaluated for aluminium and gold-plated electrodes for the above range of E/N. Measurements of the sparking potentials showed that Paschen's law is not obeyed in air at values of Nd near and below the Paschen minimum.
Resumo:
Nanoplate LiFePO4 is synthesized by a polyol route starting from only two reactants, namely, FePO4 and LiOH. The crystalline compound forms by refluxing a tetraethylene glycol solution consisting of FePO4 and LiOH at 335 degrees C without further heating of the reaction product.The nanoplates have average dimensions of 30 nm width and 160 nm length, as measured from transmission electron microscopy micrographs.The surface area of the LiFePO4 sample is 38 m(2) g(-1). Also, the sample is porous with a broadly distributed pore around 50 nm. The electrodes fabricated out of the nanoplate of LiFePO4 exhibit a high electrochemical activity. Discharge capacity values measured are 160 and 100 mAh g(-1) at 0.15C and 3.45C, respectively. A stable capacity of about 155 mAh g(-1) is measured at 0.2C over a 50 charge-discharge cycle. (C) 2010 The Electrochemical Society. [DOI: 10.1149/1.3425730] All rights reserved.
Resumo:
The standard molar Gibbs free energy of formation of Co2TiO4, CoTiO3,and CoTi2O5 as a function of temperature over an extended range (900 to 1675) K was measured using solid-state electrochemical cells incorporating yttria-stabilized zirconia as the electrolyte, with CoO as reference electrode and appropriate working electrodes. For the formation of the three compounds from their component oxides CoO with rock-salt and TiO2 with rutile structure, the Gibbs free energy changes are given by:Delta(f)G degrees((ox))(Co2TiO4) +/- 104/(J . mol(-1)) = -18865 - 4.108 (T/K)Delta(f)G degrees((ox))(CoTiO3) +/- 56/(J . mol(-1)) = -19627 + 2.542 (T/K) Delta(f)G degrees((ox))(CoTi2O5) +/- 52/(J . mol(-1)) = -6223 - 6.933 (T/K) Accurate values for enthalpy and entropy of formation were derived. The compounds Co2TiO4 with spinel structure and CoTi2O5 with pseudo-brookite structure were found to be entropy stabilized. The relatively high entropy of these compounds arises from the mixing of cations on specific crystallographic sites. The stoichiometry of CoTiO3 was confirmed by inert gas fusion analysis for oxygen. Because of partial oxidation of cobalt in air, the composition corresponding to the compound Co2TiO4 falls inside a two-phase field containing the spinet solid solution Co2TiO4-Co3O4 and CoTiO3. The spinel solid solution becomes progressively enriched in Co3O4 with decreasing temperature. (c) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Describes a simple triggered vacuum gap developed for initiating electric arcs in vacuum which uses the property that the voltage required to breakdown a gap in vacuum in the presence of a solid insulating material is considerably less than the voltage required in the absence of such material. In this triggered vacuum gap a solid insulating material is used in the angular space between the main cathode and the concentric trigger electrode forming the auxiliary gap. Different materials like epoxy resin, Teflon (PTFE) and mica have been used. The trigger voltage was found to vary in the range 560-1840 V. The results with epoxy and Teflon were unsatisfactory because the trigger voltages showed wide scatter and the auxiliary gap was soon bridged by metal particles eroded from the electrodes. Though the trigger voltages required with mica were relatively high, consistent triggering could be obtained for a large number of trials before the auxiliary gap was bridged. This was probably due to better thermal stability of mica as compared with either epoxy or Teflon.