920 resultados para PANCREATIC NECROSIS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mechanism by which human leukocyte antigen B27 (HLA-B27) contributes to ankylosing spondylitis (AS) remains unclear. Genetic studies demonstrate that association with and interaction between polymorphisms of endoplasmic reticulum aminopeptidase 1 (ERAP1) and HLA-B27 influence the risk of AS. It has been hypothesised that ERAP1-mediated HLA-B27 misfolding increases endoplasmic reticulum (ER) stress, driving an interleukin (IL) 23-dependent, pro-inflammatory immune response. We tested the hypothesis that AS-risk ERAP1 variants increase ER-stress and concomitant pro-inflammatory cytokine production in HLA-B27 + but not HLA-B27-AS patients or controls. Forty-nine AS cases and 22 healthy controls were grouped according to HLA-B27 status and AS-associated ERAP1 rs30187 genotypes: HLA-B27 + ERAP1 risk, HLA-B27 + ERAP1 protective, HLA-B27-ERAP1 risk and HLA-B27-ERAP1 protective. Expression levels of ER-stress markers GRP78 (8 kDa glucose-regulated protein), CHOP (C/EBP-homologous protein) and inflammatory cytokines were determined in peripheral blood mononuclear cell and ileal biopsies. We found no differences in ER-stress gene expression between HLA-B27 + and HLA-B27-cases or healthy controls, or between cases or controls stratified by carriage of ERAP1 risk or protective alleles in the presence or absence of HLA-B27. No differences were observed between expression of IL17A or TNF (tumour necrosis factor) in HLA-B27 + ERAP1 risk, HLA-B27 + ERAP1 protective and HLA-B27-ERAP1 protective cases. These data demonstrate that aberrant ERAP1 activity and HLA-B27 carriage does not alter ER-stress levels in AS, suggesting that ERAP1 and HLA-B27 may influence disease susceptibility through other mechanisms. © 2015 Macmillan Publishers Limited.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is an increasing awareness of the therapeutic potential for combining immune-based therapies with chemotherapy in the treatment of malignant diseases, but few published studies evaluate possible cytotoxic synergies between chemotherapy and cytotoxic immune cells. Human Vα24 +/Vβ11+ NKT cells are being evaluated for use in cell-based immunotherapy of malignancy because of their immune regulatory functions and potent cytotoxic potential. In this study, we evaluated the cytotoxicity of combinations of chemotherapy and NKT cells to determine whether there is a potential to combine these treatment modalities for human cancer therapy. The cytotoxicity of NKT cells was tested against solid-tumor derived cell lines NCI-H358, DLD-1, HT-29, DU-145, TSU-Pr1 and MDA-MB231, with or without prior treatment of these target cells, with a range of chemotherapy agents. Low concentrations of chemotherapeutic agents led to sensitization of cell lines to NKT-mediated cytotoxicity, with the greatest effect being observed for prostate cancer cells. Synergistic cytotoxicity occurred in an NKT cell in a dose-dependent manner. Chemotherapy agents induced upregulation of cell surface TRAIL-R2 (DR5) and Fas (CD95) expression, increasing the capacity for NKT cells to recognize and kill via TRAIL- and FasL-mediated pathways. We conclude that administration of cytotoxic immune cells after chemotherapy may increase antitumor activities in comparison with the use of either treatment alone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Human body is in continuous contact with microbes. Although many microbes are harmless or beneficial for humans, pathogenic microbes possess a threat to wellbeing. Antimicrobial protection is provided by the immune system, which can be functionally divided into two parts, namely innate and adaptive immunity. The key players of the innate immunity are phagocytic white blood cells such as neutrophils, monocytes, macrophages and dendritic cells (DCs), which constantly monitor the blood and peripheral tissues. These cells are armed for rapid activation upon microbial contact since they express a variety of microbe-recognizing receptors. Macrophages and DCs also act as antigen presenting cells (APCs) and play an important role in the development of adaptive immunity. The development of adaptive immunity requires intimate cooperation between APCs and T lymphocytes and results in microbe-specific immune responses. Moreover, adaptive immunity generates immunological memory, which rapidly and efficiently protects the host from reinfection. Properly functioning immune system requires efficient communication between cells. Cytokines are proteins, which mediate intercellular communication together with direct cell-cell contacts. Immune cells produce inflammatory cytokines rapidly following microbial contact. Inflammatory cytokines modulate the development of local immune response by binding to cell surface receptors, which results in the activation of intracellular signalling and modulates target cell gene expression. One class of inflammatory cytokines chemokines has a major role in regulating cellular traffic. Locally produced inflammatory chemokines guide the recruitment of effector cells to the site of inflammation during microbial infection. In this study two key questions were addressed. First, the ability of pathogenic and non-pathogenic Gram-positive bacteria to activate inflammatory cytokine and chemokine production in different human APCs was compared. In these studies macrophages and DCs were stimulated with pathogenic Steptococcus pyogenes or non-pathogenic Lactobacillus rhamnosus. The second aim of this thesis work was to analyze the role of pro-inflammatory cytokines in the regulation of microbe-induced chemokine production. In these studies bacteria-stimulated macrophages and influenza A virus-infected lung epithelial cells were used as model systems. The results of this study show that although macrophages and DCs share several common antimicrobial functions, these cells have significantly distinct responses against pathogenic and non-pathogenic Gram-positive bacteria. Macrophages were activated in a nearly similar fashion by pathogenic S. pyogenes and non-pathogenic L. rhamnosus. Both bacteria induced the production of similar core set of inflammatory chemokines consisting of several CC-class chemokines and CXCL8. These chemokines attract monocytes, neutrophils, dendritic cells and T cells. Thus, the results suggest that bacteria-activated macrophages efficiently recruit other effector cells to the site of inflammation. Moreover, macrophages seem to be activated by all bacteria irrespective of their pathogenicity. DCs, in contrast, were efficiently activated only by pathogenic S. pyogenes, which induced DC maturation and production of several inflammatory cytokines and chemokines. In contrast, L. rhamnosus-stimulated DCs matured only partially and, most importantly, these cells did not produce inflammatory cytokines or chemokines. L. rhamnosus-stimulated DCs had a phenotype of "semi-mature" DCs and this type of DCs have been suggested to enhance tolerogenic adaptive immune responses. Since DCs have an essential role in the development of adaptive immune response the results suggest that, in contrast to macrophages, DCs may be able to discriminate between pathogenic and non-pathogenic bacteria and thus mount appropriate inflammatory or tolerogenic adaptive immune response depending on the microbe in question. The results of this study also show that pro-inflammatory cytokines can contribute to microbe-induced chemokine production at multiple levels. S. pyogenes-induced type I interferon (IFN) was found to enhance the production of certain inflammatory chemokines in macrophages during bacterial stimulation. Thus, bacteria-induced chemokine production is regulated by direct (microbe-induced) and indirect (pro-inflammatory cytokine-induced) mechanisms during inflammation. In epithelial cells IFN- and tumor necrosis factor- (TNF-) were found to enhance the expression of PRRs and components of cellular signal transduction machinery. Pre-treatment of epithelial cells with these cytokines prior to virus infection resulted in markedly enhanced chemokine response compared to untreated cells. In conclusion, the results obtained from this study show that pro-inflammatory cytokines can enhance microbe-induced chemokine production during microbial infection by providing a positive feedback loop. In addition, pro-inflammatory cytokines can render normally low-responding cells to high chemokine producers via enhancement of microbial detection and signal transduction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

T cells expressing NK cell receptors (NKR) display rapid MHC-unrestricted cytotoxicity and potent cytokine secretion and are thought to play roles in immunity against tumors. We have quantified and characterized NKR+ T cells freshly isolated from epithelial and lamina propria layers of duodenum and colon from 16 individuals with no evidence of gastrointestinal disease and from tumor and uninvolved tissue from 19 patients with colorectal cancer. NKR+ T cell subpopulations were differentially distributed in different intestinal compartments, and CD161+ T cells accounted for over one half of T cells at all locations tested. Most intestinal CD161+ T cells expressed alpha beta TCR and either CD4 or CD8. Significant proportions expressed HLA-DR,CD69 and Fas ligand. Upon stimulation in vitro, CD161+ T cells produced IFN-gamma and TNF-alpha but not IL-4. NKT cells expressing the Valpha24Vbeta11 TCR, which recognizes CD1d,were virtually absent from the intestine, but colonic cells produced IFN-gamma in response to the NKT cell agonist ligand alpha-galactosylceramide. NKR+ T cells were not expanded in colonic tumors compared to adjacent uninvolved tissue. The predominance, heterogeneity and differential distribution of NKR+ T cells at different intestinal locations suggests that they are central to intestinal immunity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction Single nucleotide polymorphisms in ERAP2 are strongly associated with ankylosing spondylitis (AS). One AS-associated single nucleotide polymorphism, rs2248374, causes a truncated ERAP2 protein that is degraded by nonsense-mediated decay. Approximately 25% of the populations of European ancestry are therefore natural ERAP2 knockouts. We investigated the effect of this associated variant on HLA class I allele presentation, surface heavy chains, endoplasmic reticulum (ER) stress markers and cytokine gene transcription in AS. Methods Patients with AS and healthy controls with either AA or GG homozygous status for rs2248374 were studied. Antibodies to CD14, CD19-ECD, HLA-A-B-C, Valpha7.2, CD161, anti-HC10 and anti-HLA-B27 were used to analyse peripheral blood mononuclear cells. Expression levels of ER stress markers (GRP78 and CHOP) and proinflammatory genes (tumour necrosis factor (TNF), IL6, IL17 and IL22) were assessed by qPCR. Results There was no significant difference in HLAclass I allele presentation or major histocompatibility class I heavy chains or ER stress markers GRP78 and CHOP or proinflammatory gene expression between genotypes for rs2248374 either between cases, between cases and controls, and between controls. Discussion Large differences were not seen in HLAB27 expression or cytokine levels between subjects with and without ERAP2 in AS cases and controls. This suggests that ERAP2 is more likely to influence AS risk through other mechanisms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Kidney transplantation (Tx) is the treatment of choice for end stage renal disease. Immunosuppressive medications are given to prevent an immunological rejection of the transplant. However, immunosuppressive drugs increase e.g. the risk of infection, cancer or nephrotoxicity. A major genetic contributors to immunological acceptance of the graft are human leukocyte antigen (HLA) genes. Also other non-HLA gene polymorphisms may predict the future risk of complications before Tx, possibly enabling individualised immunotherapy. Graft function after Tx is monitored using non-specific clinical symptoms and laboratory markers. The definitive diagnosis of graft rejection however relies on a biopsy of the graft. In the acute rejection (AR) diagnostics there is a need for an alternative to biopsy that would be an easily repeatable and simple method for regular use. Frequent surveillance of acute or subclinical rejection (SCR) may improve long-term function. In this thesis, associations between cytokine and thrombosis associated candidate genes and the outcome of kidney Tx were studied. Cytotoxic and co-stimulatory T lymphocyte molecule gene expression biomarkers for the diagnosis of the AR and the SCR were also investigated. We found that polymorphisms in the cytokine genes tumor necrosis factor and interleukin 10 (IL10) of the recipients were associated with AR. In addition, certain IL10 gene polymorphisms of the donors were associated with the incidence of cytomegalovirus infection and occurrence of later infection in a subpopulation of recipients. Further, polymorphisms in genes related to the risk of thrombosis and those of certain cytokines were not associated with the occurrence of thrombosis, infarction, AR or graft survival. In the study of biomarkers for AR, whole blood samples were prospectively collected from adult kidney Tx patients. With real-time quantitative PCR (RT-QPCR) gene expression quantities of CD154 and ICOS differentiated the patients with AR from those without, but not from the patients with other causes of graft dysfunction. Biomarkers for SCR were studied in paediatric kidney Tx patients. We used RT-QPCR to quantify the gene expression of immunological candidate genes in a low-density array format. In addition, we used RT-QPCR to validate the results of the microarray analysis. No gene marker differentiated patients with SCR from those without SCR. This research demonstrates the lack of robust markers among polymorphisms or biomarkers in investigated genes that could be included in routine analysis in a clinical laboratory. In genetic studies, kidney Tx can be regarded as a complex trait, i.e. several environmental and genetic factors may determine its outcome. A number of currently unknown genetic factors probably influence the results of Tx.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hepatotoxicity due to overdose of the analgesic and antipyretic acetaminophen (A-PAIP) is a major cause of liver failure in adults. To better understand the contributions of different signaling pathways, the expression and role of Ras activation was evaluated after oral dosing of mice with APAP (400-500 mg/kg). Ras-guanosine triphosphate (GTP) is induced early and in an oxidative stress-dependent manner. The functional role of Ras activation was studied by a single intraperitoneal injection of the neutral sphingomyelinase and farnesyltransferase inhibitor (FTI) manumycin A (I mg/kg), which lowers induction of Ras-GTP and serum amounts of alanine aminotransferase (ALT). APAP dosing decreases hepatic glutathione amounts, which are not affected by manumycin A treatment. However, APAP-induced activation of c-Jun N-terminal kinase, which plays an important role, is reduced by manumycin A. Also, APAP-induced mitochondrial reactive oxygen species are reduced by manumycin A at a later time point during liver injury. Importantly, the induction of genes involved in the inflammatory response (including iNos, gp91phox, and Fasl) and serum amounts of proinflammatory cytokines interferon-gamma (IFN gamma) and tumor necrosis factor alpha, which increase greatly with APAP challenge, are suppressed with manumycin A. The FTI ctivity of manumycin A is most likely involved in reducing APAP-induced liver injury, because a specific neutral sphingomyelinase inhibitor, GW4869 (I mg/kg), did not show any hepatoprotective effect. Notably, a structurally distinct FTI, gliotoxin (I mg/kg), also inhibits Ras activation and reduces serum amounts of ALT and IFN-gamma after APAP dosing. Finally, histological analysis confirmed the hepatoprotective effect f manumycin A and gliotoxin during APAP-induced liver damage. Conclusion: This study identifies a key role for Ras activation and demonstrates the therapeutic efficacy of FTIs during APAP-induced liver injury.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Missense and frameshift mutations in TRAF family member-associated NF-kappa-B activator (TANK)-binding kinase 1 (TBK1) have been reported in European sporadic and familial amyotrophic lateral sclerosis (ALS) cohorts. To assess the role of TBK1 in ALS patient cohorts of wider ancestry, we have analyzed whole-exome sequence data from an Australian cohort of familial ALS (FALS) patients and controls. We identified a novel TBK1 deletion (c.1197delC) in a FALS patient of Chinese origin. This frameshift mutation (p.L399fs) likely results in a truncated protein that lacks functional domains required for adapter protein binding, as well as protein activation and structural integrity. No novel or reported TBK1 mutations were identified in FALS patients of European ancestry. This is the first report of a TBK1 mutation in an ALS patient of Asian origin and indicates that sequence variations in TBK1 are a rare cause of FALS in Australia. © 2015 Elsevier Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND Approximately 50% of patients with stage 3 Chronic Kidney Disease are 25-hydroxyvitamin D insufficient, and this prevalence increases with falling glomerular filtration rate. Vitamin D is now recognised as having pleiotropic roles beyond bone and mineral homeostasis, with the vitamin D receptor and metabolising machinery identified in multiple tissues. Worryingly, recent observational data has highlighted an association between hypovitaminosis D and increased cardiovascular mortality, possibly mediated via vitamin D effects on insulin resistance and inflammation. The main hypothesis of this study is that oral Vitamin D supplementation will ameliorate insulin resistance in patients with Chronic Kidney Disease stage 3 when compared to placebo. Secondary hypotheses will test whether this is associated with decreased inflammation and bone/adipocyte-endocrine dysregulation. METHODS/DESIGN This study is a single-centre, double-blinded, randomised, placebo-controlled trial. Inclusion criteria include; estimated glomerular filtration rate 30-59 ml/min/1.73 m(2); aged >or=18 on entry to study; and serum 25-hydroxyvitamin D levels <75 nmol/L. Patients will be randomised 1:1 to receive either oral cholecalciferol 2000IU/day or placebo for 6 months. The primary outcome will be an improvement in insulin sensitivity, measured by hyperinsulinaemic euglycaemic clamp. Secondary outcome measures will include serum parathyroid hormone, cytokines (Interleukin-1beta, Interleukin-6, Tumour Necrosis Factor alpha), adiponectin (total and High Molecular Weight), osteocalcin (carboxylated and under-carboxylated), peripheral blood mononuclear cell Nuclear Factor Kappa-B p65 binding activity, brachial artery reactivity, aortic pulse wave velocity and waveform analysis, and indirect calorimetry. All outcome measures will be performed at baseline and end of study. DISCUSSION To date, no randomised controlled trial has been performed in pre-dialysis CKD patients to study the correlation between vitamin D status with supplementation, insulin resistance and markers of adverse cardiovascular risk. We remain hopeful that cholecalciferol may be a safe intervention, with health benefits beyond those related to bone-mineral homeostasis. TRIAL REGISTRATION Australian and New Zealand Clinical Trials Registry ACTRN12609000246280.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Human pancreatic juice contains two major trypsinogen isoenzymes called trypsinogen-1 and -2, or cationic and anionic trypsinogen, respectively. Trypsinogen isoenzymes are also expressed in various normal and malignant tissues. We aimed at developing monoclonal antibodies (MAbs) and time-resolved immunofluorometric methods recognizing human trypsinogen-1 and -2, respectively. Using these MAbs and methods we purified, characterized and quantitated trypsinogen isoenzymes in serum samples, ovarian cyst fluids and conditioned cell culture media. In sera from healthy subjects and patients with extrapancreatic disease the concentration of trypsinogen-1 is higher than that of trypsinogen-2. However, in acute pancreatitis we found that the concentration of serum trypsinogen-2 is 50-fold higher than in controls, whereas the difference in trypsinogen-1 concentration is only 15-fold. This suggested that trypsinogen-2 could be used as a diagnostic marker for acute pancreatitis. In human ovarian cyst fluids tumor-associated trypsinogen-2 (TAT-2) is the predominant isoenzyme. Most notably, in mucinous cyst fluids the levels of TAT-2 were higher in borderline and malignant than in benign cases. The increased levels in association with malignancy suggested that TAT could be involved in ovarian tumor dissemination and breakage of tissue barriers. Serum samples from patients who had undergone pancreatoduodenectomy contained trypsinogen-2. Trypsinogen-1 was detected in only one of nine samples. These results suggested that the expression of trypsinogen is not restricted to the pancreas. Determination of the isoenzyme pattern by ion exchange chromatography revealed isoelectric variants of trypsinogen isoenzymes in serum samples. Intact trypsinogen isoenzymes and tryptic and chymotryptic trypsinogen peptides were purified and characterized by mass spectrometry, Western blot analysis and N-terminal sequencing. The results showed that pancreatic trypsinogen-1 and -2 are sulfated at tyrosine 154 (Tyr154), whereas TAT-2 from a colon carcinoma cell line is not. Tyr154 is located within the primary substrate binding pocket of trypsin, thus Tyr154 sulfation is likely to influence substrate binding. The previously known differences in charge, substrate specificity and inhibitor binding between pancreatic and tumor-associated trypsinogens are suggested to be caused by sulfation of Tyr154 in pancreatic trypsinogens.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Breast reconstruction is performed for 10-15 % of women operated on for breast cancer. A popular method is the TRAM (transverse rectus abdominis musculocutaneous) flap formed of the patient’s own abdominal tissue, a part of one of the rectus abdominis muscles and a transverse skin-subcutis area over it. The flap can be raised as a pedicled or a free flap. The pedicled TRAM flap, based on its nondominant pedicle superior epigastric artery (SEA), is rotated to the chest so that blood flow through SEA continues. The free TRAM flap, based on its dominant pedicle deep inferior epigastric artery (DIEA), is detached from the abdomen, transferred to the chest, and DIEA and vein are anastomosed to vessels on the chest. Cutaneous necrosis is seen in 5–60 % of pedicled TRAM flaps and in 0–15 % of free TRAM flaps. This study was the first one to show with blood flow measurements that the cutaneous blood flow is more generous in free than in pedicled TRAM flaps. After this study the free TRAM flap has exceeded the pedicled flap in popularity as a breast reconstruction method, although the free flap it is technically a more demanding procedure than the pedicled TRAM flap. In pedicled flaps, a decrease in cutaneous blood flow was observed when DIEA was ligated. It seems that SEA cannot provide sufficient blood flow on the first postoperative days. The postoperative cutaneous blood flow in free TRAM flaps was more stable than in pedicled flaps. Development of cutaneous necrosis of pedicled TRAM flaps could be predicted based on intraoperative laser Doppler flowmetry (LDF) measurements. The LDF value on the contralateral skin of the flap decreased to 43 ± 7 % of the initial value after ligation of the DIEA in flaps developing cutaneous necrosis during the next week. Endothelin-1 (ET-1) is a powerful vasoconstrictory peptide secreted by vascular endothelial cells. A correlation was found between plasma ET-1 concentrations and peripheral vasoconstriction developing during and after breast reconstructions with a pedicled TRAM flap. ET-1 was not associated with the development of cutaneous necrosis. Felodipine, a vasodilating calcium channel antagonist, had no effect on plasma ET-1 concentrations, peripheral vasoconstriction or development of cutaneous necrosis in free TRAM flaps. Body mass index and thickness of abdominal were not associated with cutaneous necrosis in pedicled TRAM flaps.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Matrix metalloproteinases (MMPs) comprise a family of 23 zinc-dependent human endopeptidases that can degrade virtually all components of the extracellular matrix (ECM). They are classified into eight subgroups according to their structure and into six subgroups based on their substrate-specificity. MMPs have been implicated in inflammation, tissue destruction, cell migration, arthritis, vascular remodeling, angiogenesis, and tumor growth and invasion. MMPs are inhibited by their natural inhibitors, tissue inhibitors of metalloproteinases (TIMPs). Different MMPs function in the same tasks depending on the tissue or cancer subtype. I investigated the role of recently discovered MMPs, especially MMPs-19 and -26, in intestinal inflammation, in intestinal and cutaneous wound healing, and in intestinal cancer. Several MMPs and TIMPs were studied to determine their exact location at tissue level and to obtain information on possible functions of MMPs in such tissues and diseases as the healthy intestine, inflammatory bowel disease (IBD), neonatal necrotizing enterocolitis (NEC), pyoderma gangrenosum (PG), and colorectal as well as pancreatic cancers. In latent celiac disease (CD), I attempted to identify markers to predict later onset of CD in children and adolescents. The main methods used were immunohistochemistry, in situ hybridization, and Taqman RT-PCR. My results show that MMP-26 is important for re-epithelialization in intestinal and cutaneous wound healing. In colon and pancreatic cancers, MMP-26 seems to be a marker of invasive potential, although it is not itself expressed at the invasive front. MMP-21 is upregulated in pancreatic cancer and may be associated with tumor differentiation. MMPs-19 and -28 are associated with normal tissue turnover in the intestine, but they disappear in tumor progression as if they were protective markers . MMP-12 is an essential protease in intestinal inflammation and tissue destruction, as seen here in NEC and in previous CD studies. In patients with type 1 diabetes (T1D), MMPs-1, -3, and -12 were upregulated in the intestinal mucosa. Furthermore, MMP-7 was strongly elevated in NEC. In a model of aberrant wound repair, PG, MMPs-8, -9, and 10 and TNFα may promote ECM destruction, while absence of MMP-1 and MMP-26 from keratinocytes retards re-epithelialization. Based on my results, I suggest MMP-26 to be considered a putative marker for poor prognosis in pancreatic and colon cancer. However, since it functions differently in various tissues and tumor subtypes, this use cannot be generalized. Furthermore, MMP-26 is a beneficial marker for wound healing if expressed by migrating epithelial cells. MMP-12 expression in latent CD patients warrants research in a larger patient population to confirm its role as a specific marker for CD in pathologically indistinct cases. MMP-7 should be considered one of the most crucial proteases in NEC-associated tissue destruction; hence, specific inhibitors of this MMP are worth investigating. In PG, TNFα inhibitors are potential therapeutic agents, as shown already in clinical trials. In conclusion, studies of several MMPs in specific diseases and in healthy tissues are needed to elucidate their roles at the tissue level. MMPs and TIMPs are not exclusively destructive or reparative in tissues. They seem to function differently in different tissues. To identify selective MMP inhibitors, we must thoroughly understand the MMP profile (degradome) and their functions in various organs not to interfere with normal reparative functions during wound repair or beneficial host-response effects during cancer initiation and growth.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Breast cancer is the most common form of potentially fatal cancer in women in the Western world. Better understanding of the breast cancer disease process together with developments in treatments have led to improved survival and reduced risk of recurrence, significantly influencing the acceptance of breast reconstructions as part of breast cancer treatment. Skin-sparing mastectomy followed by immediate breast reconstruction has proved superior to other forms of breast reconstruction in terms of aesthetic outcome. However, due to the relatively recent introduction of skin-sparing mastectomy concerns on the surgical and oncological safety of the operation persist. The aim of the present study is to evaluate the surgical and oncological safety of skin-sparing mastectomy and immediate breast reconstruction in a consecutive patient series with ensuing follow-up. Subsequent aims of the study are to examine possibilities of reducing surgical complications of the operation and to assess the feasibility of sentinel node biopsy together with immediate breast reconstruction. The study population comprises a consecutive series of patients having undergone skin-sparing mastectomy followed by immediate breast reconstruction at the Helsinki University Central Hospital between 1992 and 2006. In Study I, the hospital records of 207 patients, operated between 1992 and 2001, were analyzed for surgical complications and recurrences of breast cancer during follow-up. In Study II, 60 consecutive patients were randomized into either conventional diathermy or radiofrequency coagulation groups to examine possibilities of reducing skin-flap complications. Study III consists of 62 consecutive breast cancer patients evaluated for the feasibility of sentinel node biopsy simultaneously with immediate breast reconstruction. In Study IV, hospital records were analyzed to examine local recurrence of breast cancer in a consecutive series of 146 patients with Stage I or II disease. Post-operative complications in Study I included native skin-flap necrosis (10.1%), hematoma (10.1%), anastomose thrombosis (5.3%), infection (3.4%), hernia (2.6%) and loss of one microvascular flap (0.7%). The Stage I and II patients in Study IV had a local recurrence rate of 2.7%, an isolated regional lymph node recurrence rate of 2.1% and a systemic recurrence rate of 2.7%, during a mean follow-up time of 51 months. The Stage III patients in study I had a locoregional recurrence rate of 31.3% during follow-up. Radiofrequency coagulation in Study II did not decrease skin-flap complications when compared with conventional diathermy. An increased skin-flap complication rate in Study II was associated with smoking and the type of skin incision used. In Study III, eleven patients had tumor positive sentinel nodes, nine of which were detected intraoperatively. Skin-sparing mastectomy followed by immediate breast reconstruction is a safe procedure both surgically and oncologically, especially for early stage breast cancer. Tennis racket type incision is associated with an increased skin-flap complication rate. Sentinel node biopsy with intraoperative assessment of sentinel node metastases is feasible in patients undergoing immediate breast reconstruction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Type 1 diabetes (T1D) is considered to be an autoimmune disease. In T1D insulin producing pancreatic β cells are destroyed. The disease process begins years before the clinical diagnosis of T1D. During the pathogenesis of T1D, pancreatic islets are infiltrated by cells of the immune system and T-lymphocytes are considered to be the main mediators of the β-cell destruction. In children with an active β-cell destruction process, autoantibodies against β-cell antigens appear in the blood. Individuals at increased risk of developing T1D can often be identified by detecting serum autoantibodies against β-cell antigens. Immunological aberrancies associated with T1D are related to defects in the polarization of T cells and in the function of regulatory mechanisms. T1D has been considered as an organ-specific autoimmune disease mediated by uncontrolled Th1-responses. In human T1D, the evidence for the role of over-expression of cytokines promoting cytotoxicity is controversial. For the past 15 years, regulatory T cells (Tregs) have been recognized as having a key role in the initiation and maintenance of tolerance, limiting harmful autoantigen-specific inflammation processes. It is possible that, if regulatory mechanisms fail to be initiated, the subtle inflammation targeting β cells lead to insulitis and eventually to overt T1D in some individuals. In the present thesis, we studied the induction of Tregs during the generation of T-cell responses in T1D. The results suggest that the generation of regulatory mechanisms and effector mechanisms upon T-cell activation is aberrant in children with T1D. In our studies, an in vitro cytotoxic environment inhibited the induction of genes associated with regulatory functions upon T-cell activation. We also found T1D patients to have an impaired cytotoxic response against coxsackievirus B4. Ineffective virus clearance may increase the apoptosis of β cells, and thus the risk of β-cell specific autoimmunity, due to the increased presentation of β-cell-derived peptides by APCs to T cells in pancreatic lymph nodes. Recently, a novel T helper cell subset called Th17 has been discovered. Animal models have associated Th17 cells and especially co-producers of IL-17 and IFN-γ with the pathogenesis of T1D. We aimed to characterize the role of Th17 immunity in human T1D. We demonstrated IL-17 activation to be a major alteration in T1D patients in comparison to healthy children. Moreover, alterations related to the FOXP3-mediated regulatory mechanisms were associated with the IL-17 up-regulation seen in T1D patients. These findings may have therapeutic implications for the treatment and prevention of T1D.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The red genes of phage lambda specify two proteins, exonuclease and beta protein, which are essential for its general genetic recombination in recA- cells. These proteins seem to occur in vivo as an equimolar complex. In addition, beta protein forms a complex with another polypeptide, probably of phage origin, of Mr 70,000. The 70-kDa protein appears to be neither a precursor nor an aggregated form of either exonuclease or beta protein, since antibodies directed against the latter two proteins failed to react with 70-kDa protein on Ouchterlony double diffusion analysis. beta protein promotes Mg2+-dependent renaturation of complementary strands (Kmiec, E., and Holloman, W. K. (1981) J. Biol. Chem. 256, 12636-12639). To look for other pairing activities of beta protein, we developed methods of purification to free it of associated exonuclease. Exonuclease-free beta protein appeared unable to cause the pairing of a single strand with duplex DNA; however, like Escherichia coli single strand binding protein (SSB), beta protein stimulated formation of joint molecules by recA protein from linear duplex DNA and homologous circular single strands. Like recA protein, but unlike SSB, beta protein promoted the joining of the complementary single-stranded ends of phage lambda DNA. beta protein specifically protected single-stranded DNA from digestion by pancreatic DNase. The half-time for renaturation catalyzed by beta protein was independent of DNA concentration, unlike renaturation promoted by SSB and spontaneous renaturation, which are second order reactions. Thus, beta protein resembles recA protein in its ability to bring single-stranded DNA molecules together and resembles SSB in its ability to reduce secondary structure in single-stranded DNA.