837 resultados para Out-of-sample


Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is strong empirical evidence that risk premia in long-term interest rates are time-varying. These risk premia critically depend on interest rate volatility, yet existing research has not examined the im- pact of time-varying volatility on excess returns for long-term bonds. To address this issue, we incorporate interest rate option prices, which are very sensitive to interest rate volatility, into a dynamic model for the term structure of interest rates. We estimate three-factor affine term structure models using both swap rates and interest rate cap prices. When we incorporate option prices, the model better captures interest rate volatility and is better able to predict excess returns for long-term swaps over short-term swaps, both in- and out-of-sample. Our results indicate that interest rate options contain valuable infor- mation about risk premia and interest rate dynamics that cannot be extracted from interest rates alone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The goal of this paper is twofold. First, using five of the most actively traded stocks in the Brazilian financial market, this paper shows that the normality assumption commonly used in the risk management area to describe the distributions of returns standardized by volatilities is not compatible with volatilities estimated by EWMA or GARCH models. In sharp contrast, when the information contained in high frequency data is used to construct the realized volatilies measures, we attain the normality of the standardized returns, giving promise of improvements in Value at Risk statistics. We also describe the distributions of volatilities of the Brazilian stocks, showing that the distributions of volatilities are nearly lognormal. Second, we estimate a simple linear model to the log of realized volatilities that differs from the ones in other studies. The main difference is that we do not find evidence of long memory. The estimated model is compared with commonly used alternatives in an out-of-sample experiment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O objetivo deste estudo é propor a implementação de um modelo estatístico para cálculo da volatilidade, não difundido na literatura brasileira, o modelo de escala local (LSM), apresentando suas vantagens e desvantagens em relação aos modelos habitualmente utilizados para mensuração de risco. Para estimação dos parâmetros serão usadas as cotações diárias do Ibovespa, no período de janeiro de 2009 a dezembro de 2014, e para a aferição da acurácia empírica dos modelos serão realizados testes fora da amostra, comparando os VaR obtidos para o período de janeiro a dezembro de 2014. Foram introduzidas variáveis explicativas na tentativa de aprimorar os modelos e optou-se pelo correspondente americano do Ibovespa, o índice Dow Jones, por ter apresentado propriedades como: alta correlação, causalidade no sentido de Granger, e razão de log-verossimilhança significativa. Uma das inovações do modelo de escala local é não utilizar diretamente a variância, mas sim a sua recíproca, chamada de “precisão” da série, que segue uma espécie de passeio aleatório multiplicativo. O LSM captou todos os fatos estilizados das séries financeiras, e os resultados foram favoráveis a sua utilização, logo, o modelo torna-se uma alternativa de especificação eficiente e parcimoniosa para estimar e prever volatilidade, na medida em que possui apenas um parâmetro a ser estimado, o que representa uma mudança de paradigma em relação aos modelos de heterocedasticidade condicional.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study aims to contribute on the forecasting literature in stock return for emerging markets. We use Autometrics to select relevant predictors among macroeconomic, microeconomic and technical variables. We develop predictive models for the Brazilian market premium, measured as the excess return over Selic interest rate, Itaú SA, Itaú-Unibanco and Bradesco stock returns. We nd that for the market premium, an ADL with error correction is able to outperform the benchmarks in terms of economic performance. For individual stock returns, there is a trade o between statistical properties and out-of-sample performance of the model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigates the role of consumption-wealth ratio on predicting future stock returns through a panel approach. We follow the theoretical framework proposed by Lettau and Ludvigson (2001), in which a model derived from a nonlinear consumer’s budget constraint is used to settle the link between consumption-wealth ratio and stock returns. Using G7’s quarterly aggregate and financial data ranging from the first quarter of 1981 to the first quarter of 2014, we set an unbalanced panel that we use for both estimating the parameters of the cointegrating residual from the shared trend among consumption, asset wealth and labor income, cay, and performing in and out-of-sample forecasting regressions. Due to the panel structure, we propose different methodologies of estimating cay and making forecasts from the one applied by Lettau and Ludvigson (2001). The results indicate that cay is in fact a strong and robust predictor of future stock return at intermediate and long horizons, but presents a poor performance on predicting one or two-quarter-ahead stock returns.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study aims to contribute on the forecasting literature in stock return for emerging markets. We use Autometrics to select relevant predictors among macroeconomic, microeconomic and technical variables. We develop predictive models for the Brazilian market premium, measured as the excess return over Selic interest rate, Itaú SA, Itaú-Unibanco and Bradesco stock returns. We find that for the market premium, an ADL with error correction is able to outperform the benchmarks in terms of economic performance. For individual stock returns, there is a trade o between statistical properties and out-of-sample performance of the model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Taking into account previous research we could assume to be beneficial to diversify investments in emerging economies. We investigate in the paper International Portfolio Diversification: evidence from Emerging Markets if it still holds true, given the assumption of larger world markets integration. Our results suggest a wide spread positive time-varying correlations of emerging and developed markets. However, pair-wise cross-country correlations gave evidence that emerging markets have low integration with developed markets. Consequently, we evaluate out-of-sample performance of a portfolio with emerging equity countries, confirming the initial statement that it has a better a risk-adjusted performance over a purely developed markets portfolio.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O presente trabalho propõe um modelo de previsão simultânea de taxas de câmbio de vários países utilizando a abordagem GVAR e analisa a qualidade destas previsões. Para isso foram utilizados dados de 10 países ou regiões de taxa de câmbio, taxas de juros e nível de preços com frequência mensal entre 2003 e 2015. As previsões foram feitas utilizando janela móvel de 60 meses e avaliadas através da comparação dos erros quadráticos médios contra o benchmark padrão, o random walk, e dos testes de Pesaran e Timmermann e de Diebold e Mariano. Foram feitas previsões out-of-sample para horizontes de 1, 3, 12 e 18 meses. Os resultados mostram que o modelo proposto não consegue superar sistematicamente o random walk, contudo apresenta algum poder de previsão em alguns casos específicos

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O trabalho tem como objetivo verificar a existência e a relevância dos Efeitos Calendário em indicadores industriais. São explorados modelos univariados lineares para o indicador mensal da produção industrial brasileira e alguns de seus componentes. Inicialmente é realizada uma análise dentro da amostra valendo-se de modelos estruturais de espaço-estado e do algoritmo de seleção Autometrics, a qual aponta efeito significante da maioria das variáveis relacionadas ao calendário. Em seguida, através do procedimento de Diebold-Mariano (1995) e do Model Confidence Set, proposto por Hansen, Lunde e Nason (2011), são realizadas comparações de previsões de modelos derivados do Autometrics com um dispositivo simples de Dupla Diferença para um horizonte de até 24 meses à frente. Em geral, os modelos Autometrics que consideram as variáveis de calendário se mostram superiores nas projeções de 1 a 2 meses adiante e superam o modelo simples em todos os horizontes. Quando se agrega os componentes de categoria de uso para formar o índice industrial total, há evidências de ganhos nas projeções de prazo mais curto.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since 2010, the client base of online-trading service providers has grown significantly. Such companies enable small investors to access the stock market at advantageous rates. Because small investors buy and sell stocks in moderate amounts, they should consider fixed transaction costs, integral transaction units, and dividends when selecting their portfolio. In this paper, we consider the small investor’s problem of investing capital in stocks in a way that maximizes the expected portfolio return and guarantees that the portfolio risk does not exceed a prescribed risk level. Portfolio-optimization models known from the literature are in general designed for institutional investors and do not consider the specific constraints of small investors. We therefore extend four well-known portfolio-optimization models to make them applicable for small investors. We consider one nonlinear model that uses variance as a risk measure and three linear models that use the mean absolute deviation from the portfolio return, the maximum loss, and the conditional value-at-risk as risk measures. We extend all models to consider piecewise-constant transaction costs, integral transaction units, and dividends. In an out-of-sample experiment based on Swiss stock-market data and the cost structure of the online-trading service provider Swissquote, we apply both the basic models and the extended models; the former represent the perspective of an institutional investor, and the latter the perspective of a small investor. The basic models compute portfolios that yield on average a slightly higher return than the portfolios computed with the extended models. However, all generated portfolios yield on average a higher return than the Swiss performance index. There are considerable differences between the four risk measures with respect to the mean realized portfolio return and the standard deviation of the realized portfolio return.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since 2010, the client base of online-trading service providers has grown significantly. Such companies enable small investors to access the stock market at advantageous rates. Because small investors buy and sell stocks in moderate amounts, they should consider fixed transaction costs, integral transaction units, and dividends when selecting their portfolio. In this paper, we consider the small investor’s problem of investing capital in stocks in a way that maximizes the expected portfolio return and guarantees that the portfolio risk does not exceed a prescribed risk level. Portfolio-optimization models known from the literature are in general designed for institutional investors and do not consider the specific constraints of small investors. We therefore extend four well-known portfolio-optimization models to make them applicable for small investors. We consider one nonlinear model that uses variance as a risk measure and three linear models that use the mean absolute deviation from the portfolio return, the maximum loss, and the conditional value-at-risk as risk measures. We extend all models to consider piecewise-constant transaction costs, integral transaction units, and dividends. In an out-of-sample experiment based on Swiss stock-market data and the cost structure of the online-trading service provider Swissquote, we apply both the basic models and the extended models; the former represent the perspective of an institutional investor, and the latter the perspective of a small investor. The basic models compute portfolios that yield on average a slightly higher return than the portfolios computed with the extended models. However, all generated portfolios yield on average a higher return than the Swiss performance index. There are considerable differences between the four risk measures with respect to the mean realized portfolio return and the standard deviation of the realized portfolio return.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Index tracking has become one of the most common strategies in asset management. The index-tracking problem consists of constructing a portfolio that replicates the future performance of an index by including only a subset of the index constituents in the portfolio. Finding the most representative subset is challenging when the number of stocks in the index is large. We introduce a new three-stage approach that at first identifies promising subsets by employing data-mining techniques, then determines the stock weights in the subsets using mixed-binary linear programming, and finally evaluates the subsets based on cross validation. The best subset is returned as the tracking portfolio. Our approach outperforms state-of-the-art methods in terms of out-of-sample performance and running times.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We examine the time-series relationship between housing prices in Los Angeles, Las Vegas, and Phoenix. First, temporal Granger causality tests reveal that Los Angeles housing prices cause housing prices in Las Vegas (directly) and Phoenix (indirectly). In addition, Las Vegas housing prices cause housing prices in Phoenix. Los Angeles housing prices prove exogenous in a temporal sense and Phoenix housing prices do not cause prices in the other two markets. Second, we calculate out-of-sample forecasts in each market, using various vector autoregessive (VAR) and vector error-correction (VEC) models, as well as Bayesian, spatial, and causality versions of these models with various priors. Different specifications provide superior forecasts in the different cities. Finally, we consider the ability of theses time-series models to provide accurate out-of-sample predictions of turning points in housing prices that occurred in 2006:Q4. Recursive forecasts, where the sample is updated each quarter, provide reasonably good forecasts of turning points.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper uses Bayesian vector autoregressive models to examine the usefulness of leading indicators in predicting US home sales. The benchmark Bayesian model includes home sales, the price of homes, the mortgage rate, real personal disposable income, and the unemployment rate. We evaluate the forecasting performance of six alternative leading indicators by adding each, in turn, to the benchmark model. Out-of-sample forecast performance over three periods shows that the model that includes building permits authorized consistently produces the most accurate forecasts. Thus, the intention to build in the future provides good information with which to predict home sales. Another finding suggests that leading indicators with longer leads outperform the short-leading indicators.