992 resultados para OVERDENSE PLASMAS
Resumo:
The fast ignitor scheme for inertial confinement fusion requires forward driving of the critical density surface by light pressure (hole boring) to allow energy deposition close to the dense fuel. The recession velocity of the critical density surface has been observed to be nu/c = 0.015 at an irradiance of 1.0 x 10(19) W cm(-2) at a wavelength of 1.05 micron, in quantitative agreement with modeling. (C) 1996 American Institute of Physics.
Resumo:
The dynamics of transient electric fields generated by the interaction of high intensity laser pulses with underdense plasmas has been studied experimentally with the proton projection imaging technique. The formation of a charged channel, the propagation of its front edge and the late electric field evolution have been characterized with high temporal and spatial resolution. Particle-in-cell simulations and an electrostatic, ponderomotive model reproduce the experimental features and trace them back to the ponderomotive expulsion of electrons and the subsequent ion acceleration.
Resumo:
Laser driven proton beams have been used to diagnose transient fields and density perturbations in laser produced plasmas. Grid deflectometry techniques have been applied to proton radiography to obtain precise measurements of proton beam angles caused by electromagnetic fields in laser produced plasmas. Application of proton radiography to laser driven implosions has demonstrated that density conditions in compressed media can be diagnosed with million electron volt protons. This data has shown that proton radiography can provide unique insight into transient electromagnetic fields in super critical density plasmas and provide a density perturbation diagnostics in compressed matter.
Resumo:
Spectra of forward emitted second harmonic light from laser interaction with filamentary plasmas have been experimentally studied. Rather regular modulations in the frequency domain have been observed into overall red-shifted spectra. The observed spectral features are consistent with self-phase-modulation of the intense laser light in growing filaments. A model accounts for this effect.
Resumo:
Two spatially separated toroidal magnetic fields in the megagauss range have been detected with Faraday rotation during and after propagation of a relativistically intense laser pulse through preionized plasmas. Besides a field in the outer region of the plasma oriented as a conventional thermoelectric field, a field with the opposite orientation closely surrounding the propagation axis is observed, in conditions under which relativistic channeling occurs. A 3D particle-in-cell code was used to simulate the interaction under the conditions of the experiment.
Resumo:
Here a self-consistent continuum model is presented for a narrow gap plane-parallel dc glow discharge. The set of governing equations consisting of continuity and momentum equations for positive ions, fast (emitted by the cathode) and slow electrons (generated by fast electron impact ionization) coupled with Poisson's equation is treated by the technique of matched asymptotic expansions. Explicit results are obtained in the asymptotic limit: (chi delta) much less than 1, where chi = e Phi(a)/kT, delta = (r(D)/L)(2) (Phi(a) is the applied voltage, r(D) is the Debye radius) and pL much greater than 1(Hg mm cm), where p is the gas pressure and L is the gap length. In the case of high pressure, the electron energy relaxation length is much smaller than the gap length, and so the local field approximation is valid. The discharge space divides naturally into a cathode fall sheath, a quasineutral plasma region, and an anode fall sheath. The electric potential distribution obtained for each region in a (semi)analytical form is asymptotically matched to the adjoining regions in the region of overlap. The effects of the gas pressure, gap length, and applied voltage on the length of each region are investigated. (C) 2000 American Institute of Physics. [S1070-664X(00)01302-1].
Resumo:
We have established, through time correlated plasma emission and electrode and plasma potential measurements, that the near electrode emission observed in asymmetric capacitively coupled 13.56 MHz-driven hydrogen plasmas is caused by field reversal that leads to sheath collapse. Near-electrode emission has now been observed in Ar and He. The field reversal appears to be due to collision-induced electron drag. (C) 1997 American Institute of Physics.
Resumo:
In this paper we demonstrate a new concept in the production of negative hydrogen ions in a low-pressure multicusp discharge. The discharge voltage is modulated to produce a non-Maxwellian, hot-electron plasma during the current pulse, followed by a cool Maxwellian electron plasma in the post discharge. This procedure, of separating in time the required hot and cold electron plasmas required for volume H- production, is called a temporal filter. The time evolution of the electron energy distribution function is measured using the time-resolved second derivative of a Langmuir probe characteristic. Time-resolved measurements of the negative ion density are made using laser photodetachment. The measurements show that the negative ion density in the center of the source, at a gas pressure of 0.07 Pa, increases by a factor of 2 when the discharge is switched off. At this low pressure the average H- beam current extracted from the source, when operated with a discharge current of 1 A in the pulse modulated mode exceeds the H- beam current from a 5 A continuously operated source. The increase in efficiency of the pulsed source is explained in terms of a two-step H- production mechanism.
Resumo:
The use of atmospheric pressure nonthermal plasma represents an interesting and novel approach for the decontamination of surfaces colonized with microbial biofilms that exhibit enhanced tolerance to antimicrobial challenge. In this study, the influence of an atmospheric pressure nonthermal plasma jet, operated in a helium and oxygen gas mixture under ambient pressure, was evaluated against biofilms of Bacillus cereus,Staphylococcus aureus,Escherichia coli and Pseudomonas aeruginosa. Within <4 min of plasma exposure, complete eradication of the two Gram-positive bacterial biofilms was achieved. Although Gram-negative biofilms required longer treatment time, their complete eradication was still possible with 10 min of exposure. Whilst this study provides useful proof of concept data on the use of atmospheric pressure plasmas for the eradication of bacterial biofilms in vitro, it also demonstrates the critical need for improved understanding of the mechanisms and kinetics related to such a potentially significant approach. © 2012 Federation of European Microbiological Societies.