959 resultados para Newtonian equations
Resumo:
A strict proof of the equivalence of the Duffin-Kemmer-Petiau and Klein-Gordon Fock theories is presented for physical S-matrix elements in the case of charged scalar particles minimally interacting with an external or quantized electromagnetic field. The Hamiltonian canonical approach to the Duffin - Kemmer Petiau theory is first developed in both the component and the matrix form. The theory is then quantized through the construction of the generating functional for the Green's functions, and the physical matrix elements of the S-matrix are proved to be relativistic invariants. The equivalence of the two theories is then proved for the matrix elements of the scattered scalar particles using the reduction formulas of Lehmann, Symanzik, and Zimmermann and for the many-photon Green's functions.
Resumo:
The problem of existence and uniqueness of polynomial solutions of the Lamé differential equation A(x)y″ + 2B(x)y′ + C(x)y = 0, where A(x),B(x) and C(x) are polynomials of degree p + 1,p and p - 1, is under discussion. We concentrate on the case when A(x) has only real zeros aj and, in contrast to a classical result of Heine and Stieltjes which concerns the case of positive coefficients rj in the partial fraction decomposition B(x)/A(x) = ∑j p=0 rj/(x - aj), we allow the presence of both positive and negative coefficients rj. The corresponding electrostatic interpretation of the zeros of the solution y(x) as points of equilibrium in an electrostatic field generated by charges rj at aj is given. As an application we prove that the zeros of the Gegenbauer-Laurent polynomials are the points of unique equilibrium in a field generated by two positive and two negative charges. © 2000 American Mathematical Society.
Resumo:
We apply a five-dimensional formulation of Galilean covariance to construct non-relativistic Bhabha first-order wave equations which, depending on the representation, correspond either to the well known Dirac equation (for particles with spin 1/2) or the Duffin-Kemmer-Petiau equation (for spinless and spin 1 particles). Here the irreducible representations belong to the Lie algebra of the 'de Sitter group' in 4 + 1 dimensions, SO(5, 1). Using this approach, the non-relativistic limits of the corresponding equations are obtained directly, without taking any low-velocity approximation. As a simple illustration, we discuss the harmonic oscillator.
Resumo:
The criteria for the occurrence of roll wave phenomenon in the supercritical and turbulent Newtonian and non-Newtonian flows from the engineering point of view was analyzed. Imposing a constant discharge at the upstream of the canal and superposing a small perturbation, it was observed that roll waves can be developed more easily for small wave numbers and for high cohesions. Moreover, from the mathematical model used, it was demonstrated that the numerical viscosity was 10 times the physical viscosity.
Resumo:
In this work, a series solution is found for the integro-differential equation y″ (t) = -(ω2 c + ω2 f sin2 ωpt)y(t) + ωf (sin ωpt) z′ (0) + ω2 fωp sin ωpt ∫t 0 (cos ωps) y(s)ds, which describes the charged particle motion for certain configurations of oscillating magnetic fields. As an interesting feature, the terms of the solution are related to distinct sequences of prime numbers.
Resumo:
In this work, a Finite Element Method treatment is outlined for the equations of Magnetoaerodynamics. In order to provide a good basis for numerical treatment of Magneto-aerodynamics, a full version of the complete equations is presented and FEM contribution matrices are deduced, as well as further terms of stabilization for the compressible flow case.
Resumo:
Supersymmetry is formulated for integrable models based on the sl(2 1) loop algebra endowed with a principal gradation. The symmetry transformations which have half-integer grades generate supersymmetry. The sl(2 1) loop algebra leads to N=2 supersymmetric mKdV and sinh-Gordon equations. The corresponding N=1 mKdV and sinh-Gordon equations are obtained via reduction induced by twisted automorphism. Our method allows for a description of a non-local symmetry structure of supersymmetric integrable models. © 2003 Elsevier B.V. All rights reserved.
Resumo:
We study numerically the Schwinger-Dyson equations for the coupled system of gluon and ghost propagators in the Landau gauge and in the case of pure gauge QCD. We show that a dynamical mass for the gluon propagator arises as a solution while the ghost propagator develops an enhanced behavior in the infrared regime of QCD. Simple analytical expressions are proposed for the propagators, and the mass dependency on the ΛQCD scale and its perturbative scaling are studied. We discuss the implications of our results for the infrared behavior of the coupling constant, which, according to fits for the propagators infrared behavior, seems to indicate that α s(q2) → 0 as q2 → 0. © SISSA/ISAS 2004.
Resumo:
We discuss the solutions obtained for the gluon propagador in Landau gauge within two distinct approximations for the Schwinger-Dyson equations (SDE). The first, named Mandelstam's approximation, consist in neglecting all contributions that come from fermions and ghosts fields while in the second, the ghosts fields are taken into account leading to a coupled system of integral equations. In both cases we show that a dynamical mass for the gluon propagator can arise as a solution. © 2005 American Institute of Physics.
Resumo:
The power flow problem, in transmission networks, has been well solved, for most cases, using Newton-Raphson method (NR) and its decoupled versions. Generally speaking, the solution of a non-linear system of equations refers to two methods: NR and Successive Substitution. The proposal of this paper is to evaluate the potential of the Substitution-Newton-Raphson Method (SNR), which combines both methods, on the solution of the power flow problem. Simulations were performed using a two-bus test network in order to observe the characteristics of these methods. It was verified that the NR is faster than SNR, in terms of convergence, considering non-stressed scenarios. For those cases where the power flow in the network is closed to the limits (stressed system), the SNR converges faster. This paper presents the power flow formulation of the SNR and describes its potential for its application in special cases such as stressed scenarios. © 2006 IEEE.
Resumo:
This work presents the implementation of the ultrasonic shear reflectance method for viscosity measurement of Newtonian liquids using wave mode conversion from longitudinal to shear waves and vice-versa. The method is based on measuring the complex reflection coefficient (magnitude and phase) at a solid-liquid interface. Viscosity measurements were made in the range from 1 to 3.5MHz at 22.5°C for automotive oil (SAE40) and at 15°C for olive oil. Moreover, measurements of the olive oil were also conducted in the range from 15 to 30°C at 3.5MHz. The experimental results agree with those provided by a rotational viscometer. © 2006 IEEE.
Resumo:
Dichotomic maps are considered by means of the stability of the null solution of a class of differential equations with piecewise constant argument via associated discrete equations. Copyright © 2008 Watam Press.
Resumo:
This paper deals with the study of the basic theory of existence, uniqueness and continuation of solutions of di®erential equations with piecewise constant argument. Results about asymptotic stability of the equation x(t) =-bx(t) + f(x([t])) with argu- ment [t], where [t] designates the greatest integer function, are established by means of dichotomic maps. Other example is given to illustrate the application of the method. Copyright © 2011 Watam Press.
Resumo:
The sugarcane juice is a relatively low-cost agricultural resource, abundant in South Asia, Central America and Brazil, with vast applications in producing ethanol biofuel. In that way, a good knowledge of the rheological properties of this raw material is of crucial importance when designing and optimizing unit operations involved in its processing. In this work, the rheological behavior of untreated (USCJ, 17.9 °Brix), clarified (CSCJ, 18.2 °Brix) and mixed (MSCJ, 18.0 °Brix) sugarcane juices was studied at the temperature range from 277K to 373K, using a cone-and-plate viscometer. These fluids were found to present a Newtonian behavior and their flow curves were well-fitted by the viscosity Newtonian model. Viscosity values lied within the range 5.0×10 -3Pas to 0.04×10 -3Pas in the considered temperature interval. The dependence of the viscosity on the temperature was also successfully modeled through an Arrhenius-type equation. In addition to the dynamic viscosity, experimental values of pressure loss in tube flow were used to calculate friction factors. The good agreement between predicted and measured values confirmed the reliability of the proposed equations for describing the flow behavior of the clarified and untreated sugarcane juices. © 2010 Elsevier B.V.
Resumo:
We consider a charged Brownian gas under the influence of external and non-uniform electric, magnetic and mechanical fields, immersed in a non-uniform bath temperature. With the collision time as an expansion parameter, we study the solution to the associated Kramers equation, including a linear reactive term. To the first order we obtain the asymptotic (overdamped) regime, governed by transport equations, namely: for the particle density, a Smoluchowski- reactive like equation; for the particle's momentum density, a generalized Ohm's-like equation; and for the particle's energy density, a MaxwellCattaneo-like equation. Defining a nonequilibrium temperature as the mean kinetic energy density, and introducing Boltzmann's entropy density via the one particle distribution function, we present a complete thermohydrodynamical picture for a charged Brownian gas. We probe the validity of the local equilibrium approximation, Onsager relations, variational principles associated to the entropy production, and apply our results to: carrier transport in semiconductors, hot carriers and Brownian motors. Finally, we outline a method to incorporate non-linear reactive kinetics and a mean field approach to interacting Brownian particles. © 2011 Elsevier B.V. All rights reserved.