927 resultados para Neurons.
Biophysical and network mechanisms of high frequency extracellular potentials in the rat hippocampus
Resumo:
A fundamental question in neuroscience is how distributed networks of neurons communicate and coordinate dynamically and specifically. Several models propose that oscillating local networks can transiently couple to each other through phase-locked firing. Coherent local field potentials (LFP) between synaptically connected regions is often presented as evidence for such coupling. The physiological correlates of LFP signals depend on many anatomical and physiological factors, however, and how the underlying neural processes collectively generate features of different spatiotemporal scales is poorly understood. High frequency oscillations in the hippocampus, including gamma rhythms (30-100 Hz) that are organized by the theta oscillations (5-10 Hz) during active exploration and REM sleep, as well as sharp wave-ripples (SWRs, 140-200 Hz) during immobility or slow wave sleep, have each been associated with various aspects of learning and memory. Deciphering their physiology and functional consequences is crucial to understanding the operation of the hippocampal network.
We investigated the origins and coordination of high frequency LFPs in the hippocampo-entorhinal network using both biophysical models and analyses of large-scale recordings in behaving and sleeping rats. We found that the synchronization of pyramidal cell spikes substantially shapes, or even dominates, the electrical signature of SWRs in area CA1 of the hippocampus. The precise mechanisms coordinating this synchrony are still unresolved, but they appear to also affect CA1 activity during theta oscillations. The input to CA1, which often arrives in the form of gamma-frequency waves of activity from area CA3 and layer 3 of entorhinal cortex (EC3), did not strongly influence the timing of CA1 pyramidal cells. Rather, our data are more consistent with local network interactions governing pyramidal cells' spike timing during the integration of their inputs. Furthermore, the relative timing of input from EC3 and CA3 during the theta cycle matched that found in previous work to engage mechanisms for synapse modification and active dendritic processes. Our work demonstrates how local networks interact with upstream inputs to generate a coordinated hippocampal output during behavior and sleep, in the form of theta-gamma coupling and SWRs.
Resumo:
O objetivo do presente trabalho é comparar, do ponto de vista elétrico, a membrana do neurônio ganglionar com a da célula de neuroblastoma, analisando os efeitos das cargas fixas sobre o potencial elétrico nas superfícies da bicamada lipídica e também sobre o comportamento do perfil de potencial através da membrana, considerando as condiçõesfísico-químicas do estado de repouso e do estado de potencial de ação. As condições para a ocorrência dos referidos estados foram baseadas em valores numéricos de parâmetros elétricos e químicos, característicos dessas células, obtidos na literatura. O neurônio ganglionar exemplifica um neurônio sadio, e a célula de neuroblastoma, que é uma célula tumoral, exemplifica um neurônio patológico, alterado por esta condição. O neuroblastoma é um tumor que se origina das células da crista neural (neuroblastos), que é uma estrutura embrionária que dá origem a muitas partes do sistema nervoso, podendo surgir em diversos locais do organismo, desde a região do crânio até a área mais inferior da coluna. O modelo adotado para simular a membrana de neurônio inclui: (a) as distribuições espaciais de cargas elétricas fixas no glicocálix e na rede de proteínas citoplasmáticas; (b) as distribuições de cargas na solução eletrolítica dos meios externo e interno; e (c) as cargas superficiais da bicamada lipídica. Os resultados que obtivemos mostraram que, nos estados de repouso e de ação, os potenciais superficiais da bicamada interno (ÁSbc) e externo (ÁSgb) da célula de neuroblastoma não sofrem alteração mensurável, quando a densidade de carga na superfície interna (QSbc) torna-se 50 vezes mais negativa, tanto para uma densidade de carga na superfície externa da bicamada nula (QSgb = 0), como para um valor de QSgb 6= 0. Porém, no estado de repouso, uma leve queda em ÁSbc do neur^onio ganglionar pode ser observada com este nível de variação de carga, sendo que ÁSgb do neurônio ganglionar é mais negativo quando QSgb = 1=1100 e/A2. No estado de ação, para QSgb = 0, o aumento da negatividade de QSbc não provoca alteração detectável de ÁSbc e ÁSgb para os dois neurônios. Quando consideramos QSgb = 1=1100 e/A2, ÁSgb do neurônio ganglionar se torna mais negativo, não se observando variações detectáveis nos potenciais superficiais da célula de neuroblastoma. Tanto no repouso quanto no estado de ação, ÁSgb das duas células não sofre variação sensível com o aumento da negatividade da carga fixa distribuída espacialmente no citoplasma. Já a ÁSbc sofre uma queda gradativa nos dois tipos celulares; porém, no estado de ação, esta queda é mais rápida. Descobrimos diferenças importantes nos perfis de potencial das duas células, especialmente na região do glicocálix.
Resumo:
Nicotinic receptors are the target of nicotine in the brain. They are pentameric ion channels. The pentamer structure allows many combinations of receptors to be formed. These various subtypes exhibit specific properties determined by their subunit composition. Each brain region contains a fixed complement of nicotinic receptor subunits. The midbrain region is of particular interest because the dopaminergic neurons of the midbrain express several subtypes of nicotinic receptors, and these dopaminergic neurons are important for the rewarding effects of nicotine. The α6 nicotinic receptor subunit has garnered intense interest because it is present in dopaminergic neurons but very few other brain regions. With its specific and limited presence in the brain, targeting this subtype of nicotinic receptor may prove advantageous as a method for smoking cessation. However, we do not fully understand the trafficking and membrane localization of this receptor or its effects on dopamine release in the striatum. We hypothesized that lynx1, a known modulator of other nicotinic receptor subtypes, is important for the proper function of α6 nicotinic receptors. lynx1 has been found to act upon several classes of nicotinic receptors, such as α4β2 and α7, the two most common subtypes in the brain. To determine whether lynx1 affects α6 containing nicotinic receptors we used biochemistry, patch clamp electrophysiology, fast scan cyclic voltammetry, and mouse behavior. We found that lynx1 has effects on α6 containing nicotinic receptors, but the effects were subtle. This thesis will detail the observed effects of lynx1 on α6 nicotinic receptors.
Resumo:
How animals use sensory information to weigh the risks vs. benefits of behavioral decisions remains poorly understood. Inter-male aggression is triggered when animals perceive both the presence of an appetitive resource, such as food or females, and of competing conspecific males. How such signals are detected and integrated to control the decision to fight is not clear. Here we use the vinegar fly, Drosophila melanogaster, to investigate the manner in which food and females promotes aggression.
In the first chapter, we explore how food controls aggression. As in many other species, food promotes aggression in flies, but it is not clear whether food increases aggression per se, or whether aggression is a secondary consequence of increased social interactions caused by aggregation of flies on food. Furthermore, nothing is known about how animals evaluate the quality and quantity of food in the context of competition. We show that food promotes aggression independently of any effect to increase the frequency of contact between males. Food increases aggression but not courtship between males, suggesting that the effect of food on aggression is specific. Next, we show that flies tune the level of aggression according to absolute amount of food rather than other parameters, such as area or concentration of food. Sucrose, a sugar molecule present in many fruits, is sufficient to promote aggression, and detection of sugar via gustatory receptor neurons is necessary for food-promoted aggression. Furthermore, we show that while food is necessary for aggression, too much food decreases aggression. Finally, we show that flies exhibit strategies consistent with a territorial strategy. These data suggest that flies use sweet-sensing gustatory information to guide their decision to fight over a limited quantity of a food resource.
Following up on the findings of the first chapter, we asked how the presence of a conspecific female resource promotes male-male aggression. In the absence of food, group-housed male flies, who normally do not fight even in the presence of food, fight in the presence of females. Unlike food, the presence of females strongly influences proximity between flies. Nevertheless, as group-housed flies do not fight even when they are in small chambers, it is unlikely that the presence of female indirectly increases aggression by first increasing proximity. Unlike food, the presence of females also leads to large increases in locomotion and in male-female courtship behaviors, suggesting that females may influence aggression as well as general arousal. Female cuticular hydrocarbons are required for this effect, as females that do not produce CH pheromones are unable to promote male-male aggression. In particular, 7,11-HD––a female-specific cuticular hydrocarbon pheromone critical for male-female courtship––is sufficient to mediate this effect when it is perfumed onto pheromone-deficient females or males. Recent studies showed that ppk23+ GRNs label two population of GRNs, one of which detects male cuticular hydrocarbons and another labeled by ppk23 and ppk25, which detects female cuticular hydrocarbons. I show that in particular, both of these GRNs control aggression, presumably via detection of female or male pheromones. To further investigate the ways in which these two classes of GRNs control aggression, I developed new genetic tools to independently test the male- and female-sensing GRNs. I show that ppk25-LexA and ppk25-GAL80 faithfully recapitulate the expression pattern of ppk25-GAL4 and label a subset of ppk23+ GRNs. These tools can be used in future studies to dissect the respective functions of male-sensing and female-sensing GRNs in male social behaviors.
Finally, in the last chapter, I discuss quantitative approaches to describe how varying quantities of food and females could control the level of aggression. Flies show an inverse-U shaped aggressive response to varying quantities of food and a flat aggressive response to varying quantities of females. I show how two simple game theoretic models, “prisoner’s dilemma” and “coordination game” could be used to describe the level of aggression we observe. These results suggest that flies may use strategic decision-making, using simple comparisons of costs and benefits.
In conclusion, male-male aggression in Drosophila is controlled by simple gustatory cues from food and females, which are detected by gustatory receptor neurons. Different quantities of resource cues lead to different levels of aggression, and flies show putative territorial behavior, suggesting that fly aggression is a highly strategic adaptive behavior. How these resource cues are integrated with male pheromone cues and give rise to this complex behavior is an interesting subject, which should keep researchers busy in the coming years.
Resumo:
A doença de Parkinson (DP) é a segunda doença neurodegenerativa mais frequente depois da Doença de Alzheimer, afetando aproximadamente 1% da população com idade superior a 65 anos. Clinicamente, esta doença caracteriza-se pela presença de tremor em repouso, bradicinesia, rigidez muscular e instabilidade postural, os quais podem ser controlados com a administração do levodopa. As características patológicas da DP incluem a despigmentação da substância nigra devido à perda dos neurônios dopaminérgicos e a presença de inclusões proteicas denominadas corpos de Lewy nos neurônios sobreviventes. As vias moleculares envolvidas com esta patologia ainda são obscuras, porém a DP é uma doença complexa, resultante da interação entre fatores ambientais e causas genéticas. Mutações no gene leucine-rich repeat kinase 2 (LRRK2; OMIM 609007) constituem a forma mais comum de DP. Este gene codifica uma proteína, membro da família de proteínas ROCO, que possui, entre outros domínios, dois domínios funcionais GTPase (ROC) e quinase (MAPKKK). Neste estudo, os principais domínios do gene LRRK2 foram analisados em 204 pacientes brasileiros com DP por meio de sequenciamento dos produtos da PCR. Através da análise de 14 exons correspondentes aos domínios ROC, COR e MAPKKK foram identificadas 31 variantes. As alterações novas, p.C1770R e p.C2139S, possuem um potencial papel na etiologia da DP. Três alterações exônicas (p.R1398R, p.T1410M e p.Y2189C) e nove intrônicas (c.4317+16C>T, c.5317+59A>C, c.5509+20A>C, c.5509+52T>C, c.5509+122A>G, c.5657-46C>T, c.6382-36G>A, c.6382-37C>T e c.6576+44T>C) são potencialmente não patogênicas. Ao todo, dezessete variantes exônicas e intrônicas constituem polimorfismos já relatados na literatura (p.R1398H, p.K1423K, p.R1514Q, p.P1542S, c.4828-31T>C, p.G1624G, p.K1637K, p.M1646T, p.S1647T, c.5015+32A>G, c.5170+23T>A, c.5317+32C>T, p.G1819G, c.5948+48C>T, p.N2081D, p.E2108E e c.6381+30A>G). A frequência total de alterações potencialmente patogênicas ou patogênicas detectadas em nossa amostra foi de 3,4% (incluindo a mutação p.G2019S, anteriormente descrita em 2 artigos publicados por nosso grupo: Pimentel et al., 2008; Abdalla-Carvalho et al., 2010), sendo a frequência de mutações nos casos familiares (11,1%) cerca de seis vezes maior do que a encontrada nos casos isolados da DP (1,8%). Os resultados alcançados neste estudo revelam que mutações no gene LRRK2 desempenham um papel significativo como fator genético para o desenvolvimento da DP em pacientes brasileiros.
Resumo:
Nicotinic acetylcholine receptors (nAChRs) are pentameric, ligand-gated, cation channels found throughout the central and peripheral nervous system, whose endogenous ligand is acetylcholine, but which can also be acted upon by nicotine. The subunit compositions of nAChR determine their physiological and pharmacological properties, with different subunits expressed in different combinations or areas throughout the brain. The behavioral and physiological effects of nicotine are elicited by its agonistic and desensitizing actions selectively on neuronal nAChRs. The midbrain is of particular interest due to its population of nAChRs expressed on dopaminergic neurons, which are important for reward and reinforcement, and possibly contribute to nicotine dependence. The α6-subunit is found on dopaminergic neurons but very few other regions of the brain, making it an interesting drug target. We assayed a novel nicotinic agonist, called TI-299423 or TC299, for its possible selectivity for α6-containing nAChRs. Our goal was to isolate the role of α6-containing nAChRs in nicotine reward and reinforcement, and provide insight into the search for more effective smoking cessation compounds. This was done using a variety of in vitro and behavioral assays, aimed dually at understanding TI-299423’s exact mechanism of action and its downstream effects. Additionally, we looked at the effects of another compound, menthol, on nicotine reward. Understanding how reward is generated in the cholinergic system and how that is modulated by other compounds contributes to a better understand of our complex neural circuitry and provides insight for the future development of therapeutics.
Resumo:
In the last decade, research efforts into directly interfacing with the neurons of individuals with motor deficits have increased. The goal of such research is clear: Enable individuals affected by paralysis or amputation to regain control of their environments by manipulating external devices with thought alone. Though the motor cortices are the usual brain areas upon which neural prosthetics depend, research into the parietal lobe and its subregions, primarily in non-human primates, has uncovered alternative areas that could also benefit neural interfaces. Similar to the motor cortical areas, parietal regions can supply information about the trajectories of movements. In addition, the parietal lobe also contains cognitive signals like movement goals and intentions. But, these areas are also known to be tuned to saccadic eye movements, which could interfere with the function of a prosthetic designed to capture motor intentions only. In this thesis, we develop and examine the functionality of a neural prosthetic with a non-human primate model using the superior parietal lobe to examine the effectiveness of such an interface and the effects of unconstrained eye movements in a task that more closely simulates clinical applications. Additionally, we examine methods for improving usability of such interfaces.
The parietal cortex is also believed to contain neural signals relating to monitoring of the state of the limbs through visual and somatosensory feedback. In one of the world’s first clinical neural prosthetics based on the human parietal lobe, we examine the extent to which feedback regarding the state of a movement effector alters parietal neural signals and what the implications are for motor neural prosthetics and how this informs our understanding of this area of the human brain.
Resumo:
This investigation has resulted in the chemical identification and isolation of the egg-laying hormone from Aplysia californica, Aplysia vaccaria, and Aplysia dactylomela. The hormone, which was originally identified as the Bag Cell-Specific protein (BCS protein) on polyacrylamide gels, is a polypeptide of molecular weight ≈ 6000, which is localized in the neurosecretory bag cells of the parietovisceral ganglion and the surrounding connective tissue sheath which contains the bag cell axons. All three species produce a hormone of similar molecular weight, but varying electrophoretic mobility as determined on polyacrylamide gels. As tested, the hormone is completely cross-reactive among the three species.
Although the bag cells of sexually immature animals contain the active hormone, sexual maturation of the animal results in a 10-fold increase in the BCS protein content of these neurons.
A seasonal variation in the BCS protein content was also observed, with 150 times more hormone contained in the bag cells of Aplysia californica in August than in January. This correlates well with the variation in the animals' ability to lay eggs throughout the year (Strumwasser et al., 1969). There are some indications that the receptivity of the animal to the available hormone also fluctuates during the year, being lower in winter than in swmner. The seasonal rhythm of the other species, Aplysia vaccaria and Aplysia dactylomela, has not been investigated.
A polyacrylamide gel electrophoresis analysis of water-soluble proteins in Aplysia californica revealed several other nerve-specific proteins. One of these is also located in the bag cell somas and stains turquoise with Amido Schwarz. The function of this protein has not been investigated.
Resumo:
In this paper, the feed-forward back-propagation artificial neural network (BP-ANN) algorithm is introduced in the traditional Focus Calibration using Alignment procedure (FOCAL) technique, and a novel FOCAL technique based on BP-ANN is proposed. The effects of the parameters, such as the number of neurons on the hidden-layer and the number of training epochs, on the measurement accuracy are analyzed in detail. It is proved that the novel FOCAL technique based on BP-ANN is more reliable and it is a better choice for measurement of the image quality parameters. (c) 2005 Elsevier GmbH. All rights reserved.
Resumo:
The cerebellum is a major supraspinal center involved in the coordination of movement. The principal neurons of the cerebellar cortex, Purkinje cells, receive excitatory synaptic input from two sources: the parallel and climbing fibers. These pathways have markedly different effects: the parallel fibers control the rate of simple sodium spikes, while the climbing fibers induce characteristic complex spike bursts, which are accompanied by dendritic calcium transients and play a key role in regulating synaptic plasticity. While many studies using a variety of species, behaviors, and cerebellar regions have documented modulation in Purkinje cell activity during movement, few have attempted to record from these neurons in unrestrained rodents. In this dissertation, we use chronic, multi-tetrode recording in freely-behaving rats to study simple and complex spike firing patterns during locomotion and sleep. Purkinje cells discharge rhythmically during stepping, but this activity is highly variable across steps. We show that behavioral variables systematically influence the step-locked firing rate in a step-phase-dependent way, revealing a functional clustering of Purkinje cells. Furthermore, we find a pronounced disassociation between patterns of variability driven by the parallel and climbing fibers, as well as functional differences between cerebellar lobules. These results suggest that Purkinje cell activity not only represents step phase within each cycle, but is also shaped by behavior across steps, facilitating control of movement under dynamic conditions. During sleep, we observe an attenuation of both simple and complex spiking, relative to awake behavior. Although firing rates during slow wave sleep (SWS) and rapid eye movement sleep (REM) are similar, simple spike activity is highly regular in SWS, while REM is characterized by phasic increases and pauses in simple spiking. This phasic activity in REM is associated with pontine waves, which propagate into the cerebellar cortex and modulate both simple and complex spiking. Such a temporal coincidence between parallel and climbing fiber activity is known to drive plasticity at parallel fiber synapses; consequently, pontocerebellar waves may provide a mechanism for tuning synaptic weights in the cerebellum during active sleep.
Resumo:
Neurons obtained directly from human somatic cells hold great promise for disease modeling and drug screening. Available protocols rely on overexpression of transcription factors using integrative vectors and are often slow, complex, and inefficient. We report a fast and efficient approach for generating induced neural cells (iNCs) directly from human hematopoietic cells using Sendai virus. Upon SOX2 and c-MYC expression, CD133-positive cord blood cells rapidly adopt a neuroepithelial morphology and exhibit high expansion capacity. Under defined neurogenic culture conditions, they express mature neuronal markers and fire spontaneous action potentials that can be modulated with neurotransmitters. SOX2 and c-MYC are also sufficient to convert peripheral blood mononuclear cells into iNCs. However, the conversion process is less efficient and resulting iNCs have limited expansion capacity and electrophysiological activity upon differentiation. Our study demonstrates rapid and efficient generation of iNCs from hematopoietic cells while underscoring the impact of target cells on conversion efficiency.
Resumo:
A doença de Parkinson (DP) é a segunda doença neurodegenerativa mais frequente, depois da doença de Alzheimer, com uma incidência de aproximadamente 3,3% na população brasileira acima dos 60 anos. Ela é caracterizada por uma perda dos neurônios dopaminérgicos da parte compacta da substância negra e pela presença de inclusões protéicas intracelulares denominadas corpúsculos de Lewy nos neurônios sobreviventes. A DP tem uma etiologia complexa que envolve interações genes-ambiente e múltiplos genes de susceptibilidade. Nesse contexto, mutações de perda de função no gene da glicocerebrosidase (GBA) têm sido bem validadas como importantes fatores de risco para a DP. Esse gene está localizado na região 1q21 e compreende 11 exons que codificam a enzima lisossômica glicocerebrosidase. O principal objetivo deste estudo foi investigar se alterações no gene GBA constituem um fator de predisposição para o desenvolvimento da DP na população brasileira. Para isso, um grupo de 126 pacientes brasileiros, não-aparentados, com DP (24 casos familiares e 102 isolados; idade média 66,4 11,4) foram analisados para mutações no GBA através do seqüenciamento completo de todos os exons e alguns íntrons. Sete alterações e um alelo recombinante, anteriormente encontrados em pacientes com a DP analisados em outros estudos, foram detectados (K(-)27R, IVS2+1G>A, N370S, L444P, T369M, A456P, E326K e RecNciI), assim como, uma variante nunca antes identificada associada à DP (G325G) e uma nova mutação (W378C), num total de 18 pacientes (14,3%). Além disso, foram encontradas três alterações intrônicas (c.454+47G>A, c.589-86A>G e c.1225-34C>A), que constam do banco de SNPs, entretanto, não foram associadas a nenhuma doença. Dentre todas as variantes identificadas, três são comprovadamente patogênicas (IVS2+1G>A, L444P e N370S) e foram encontradas em 5,5% da amostra, não sendo detectadas na amostra controle, indicando uma freqüência significativamente alta dessas mutações em pacientes com DP quando comparadas aos controles (P=0,0033). Esses resultados reforçam a associação entre o gene GBA e a DP na população brasileira, além de apoiar a hipótese de que alterações nesse gene representam um importante fator de susceptibilidade ao desenvolvimento da DP
Resumo:
This paper takes a new look at an old question: what is the human self? It offers a proposal for theorizing the self from an enactive perspective as an autonomous system that is constituted through interpersonal relations. It addresses a prevalent issue in the philosophy of cognitive science: the body-social problem. Embodied and social approaches to cognitive identity are in mutual tension. On the one hand, embodied cognitive science risks a new form of methodological individualism, implying a dichotomy not between the outside world of objects and the brain-bound individual but rather between body-bound individuals and the outside social world. On the other hand, approaches that emphasize the constitutive relevance of social interaction processes for cognitive identity run the risk of losing the individual in the interaction dynamics and of downplaying the role of embodiment. This paper adopts a middle way and outlines an enactive approach to individuation that is neither individualistic nor disembodied but integrates both approaches. Elaborating on Jonas' notion of needful freedom it outlines an enactive proposal to understanding the self as co-generated in interactions and relations with others. I argue that the human self is a social existence that is organized in terms of a back and forth between social distinction and participation processes. On this view, the body, rather than being identical with the social self, becomes its mediator
Resumo:
Alpha-synuclein (Snca) plays a major role in Parkinson disease (PD). Circulating anti-Snca antibodies has been described in PD patients and healthy controls, but they have been poorly characterized. This study was designed to assess the prevalence of anti-Snca reactivity in human subjects carrying the LRRK2 mutation, idiopathic PD (iPD) patients, and healthy controls and to map the epitopes of the anti-Snca antibodies. Antibodies to Snca were detected by ELISA and immunoblotting using purified recombinant Snca in plasma from individuals carrying LRRK2 mutations (104), iPD patients (59), and healthy controls (83). Epitopes of antibodies were mapped using recombinant protein constructs comprising different regions of Snca. Clear positive anti-Snca reactivity showed no correlation with age, sex, years of evolution, or the disability scores for PD patients and anti-Snca reactivity was not prevalent in human patients with other neurological or autoimmune diseases. Thirteen of the positive individuals were carriers of LRRK2 mutations either non-manifesting (8 out 49 screened) or manifesting (5 positive out 55), three positive (out of 59) were iPD patients, and five positive (out of 83) were healthy controls. Epitope mapping showed that antibodies against the N-terminal (a.a. 1-60) or C-terminal (a.a. 109-140) regions of Snca predominate in LRRK2 mutation carriers and iPD patients, being N122 a critical amino acid for recognition by the anti-C-terminal directed antibodies. Anti-Snca circulating antibodies seem to cluster within families carrying the LRRK2 mutation indicating possible genetic or common environmental factors in the generation of anti-Snca antibodies. These results suggest that case-controls' studies are insufficient and further studies in family cohorts of patients and healthy controls should be undertaken, to progress in the understanding of the possible relationship of anti-Snca antibodies and PD patholog
Resumo:
A doença de Parkinson (DP) é a desordem neurodegenerativa motora mais frequente, com uma prevalência de, aproximadamente, 1% entre indivíduos com mais de 60 anos de idade, aumentando para 4 a 5% entre os indivíduos com idade superior a 85 anos. Esta condição é caracterizada pela perda seletiva dos neurônios dopaminérgicos da substância negra e pela presença de inclusões protéicas ricas em α-sinucleína nos neurônios sobreviventes. Pouco se sabe sobre a etiologia e a patogênese da DP. A maioria dos casos aparece esporadicamente, podendo estar associados a diversos fatores de risco ambientais e genéticos. Na última década, estudos de ligação identificaram 15 loci cromossômicos (PARK1 a PARK15) relacionados à DP e, nestes, um novo gene, ATP13A2, tem sido associado a casos de DP de início precoce. Esse gene está situado no 1p36 e codifica a proteína ATPase tipo-P da subfamília P5, de localização lisossômica, que é expressa em diversos tecidos, principalmente no cérebro. Mutações em ATP13A2 levam à formação de proteínas truncadas que ficam retidas no reticulo endoplasmático e posteriormente são degradadas pelo proteossomo, podendo causar a disfunção proteossômica, decorrente da sobrecarga gerada pela proteína mutante, ou causar a disfunção lisossômica, ambas gerando agregação tóxica. Este trabalho tem como objetivo realizar a análise molecular do gene ATP13A2 em uma amostra de 116 pacientes brasileiros com DP, de manifestação precoce (<50 anos), de forma a avaliar se mutações neste gene representam um fator de risco para a DP. O DNA foi extraído a partir de leucócitos do sangue periférico ou de saliva e a análise molecular dos éxons 2, 3, 12, 13, 14, 15, 16, 26 e 27, bem como, dos limites íntronéxons foi realizada por sequenciamento automático dos produtos da PCR. Identificamos oito variantes de sequência: quatro variantes intrônicas (uma no íntron 2, uma no íntron 13 e duas no íntron 27) e quatro variantes silenciosas (uma no éxon 3, 16, 26 e 27). Com base em dados da literatura e através de análises in silico e comparação com amostras controle, classificamos a alteração intrônica c.3084- 3C>T, e as alterações silenciosas c.2970G>A e c.3192C>T como não patogênicas; as alterações intrônicas c.106-30G>T, c.1306+42_1306+43 insC e c.3083+24C>T, e as alterações silenciosas c.132A>G e c.1610G>T foram classificadas como provavelmente não patogênicas. Nosso achados corroboram àqueles encontrados em outras populações e indicam que mutações no gene ATP13A2 não são uma causa comum de DP na amostra de pacientes brasileiros analisados. No entanto, se faz necessário estender nossas análises para outras regiões gênicas, a fim de determinar o real papel deste gene na etiologia da DP em nossa população.