985 resultados para Modulus


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A peeling model is proposed to analyze the peeling properties of bio-mimetic nano-films using the finite element method (FEM) and theoretical approach. The influences of the nano-film's adhesion length, thickness, elastic modulus, roughness and peeling angle on the peeling force were considered as well as the effect of the viscoelastic behavior. It has been found that the effective adhesion length, at which the peeling force attained maximum, was much smaller than the real length of nano-films; and the shear force dominated in the case of smaller peeling angles, whereas, the normal force dominated at larger peeling angles. The total peeling force decreased with an increasing peeling angle. Two limiting values of the peeling-off force can be found in the viscoelastic model, which corresponds to the smaller and larger loading rate cases. The effects of nano-film thickness and Young's modulus on peeling behaviors were also discussed. The results obtained are helpful for understanding the micro-adhesion mechanisms of biological systems, such as geckos. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The deformation of [0001]-oriented ZnO nanorods with hexagonal cross sections under uniaxial tensile loading is analyzed through molecular statistical thermodynamics (MST) simulations. The focus is on the size dependence of mechanical behavior in ZnO nanorods with diameters ranging from 1.95 to 17.5 nm. An irreversible phase transformation from the wurtzite (P6(3)mc space group) structure to a tetragonal structure (P4(2)/mnm space group) occurs during the tensile loading process. Young's modulus before the transformation demonstrates a size dependence consistent with what is observed in experiments. A stronger size dependence of response is seen after the transformation and is attributed to the polycrystalline nature of the transformed structure. A comparison of the MST and molecular dynamics (MD) methods shows that MST is 60 times faster than MD and yields results consistent with the results of MD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For the cube-corner indenter, an approximate linear relationship between the ratio of hardness (H) to reduced modulus (E-r) and the ratio of unloading work (W-u) to total loading work (W-t) is confirmed by finite-element calculations and by experiments. Based on this relationship a convenient method to determine the fracture toughness (K-IC) of brittle materials, especially for those at small scale, using cube-corner indentations is proposed. Finally, the method is calibrated by indentation experiments on a set of brittle materials. (C) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An analytical model about size-dependent interface energy of metal/ceramic interfaces in nanoscale is developed by introducing both the chemical energy and the structure stain energy contributions. The dependence of interface energy on the interface thickness is determined by the melting enthalpy, the molar volume, and the shear modulus of two materials composing the interfaces, etc. The analytic prediction of the interface energy and the atomic scale simulation of the interface fracture strength are compared with each other for Ag/MgO and Ni/Al2O3 interfaces, the fracture strength of the interface with the lower chemical interface energy is found to be larger. The potential of Ag/MgO interface related to the interface energy is calculated, and the interface stress and the interface fracture strength are estimated further. The effect of the interface energy on the interface strength and the behind mechanism are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The catastrophic failure of heterogeneous brittle materials under impact loading is not fully understood. To describe the catastrophic failure behavior of heterogeneous brittle materials under impact loading, an elasto-statistical-brittle (ESB) model is proposed in this paper. The ESB model characterizes the disordered inhomogeneity of material at mesoscopic scale with the statistical description of the shear strength of mesoscopic units. If the applied shear stress reaches the strength, the mesoscopic unit fails, which causes degradation in the shear modulus of the material. With a simplified ESB model, the failure wave in brittle material under uni-axial compression is analyzed. It is shown that the failure wave is a wave of strain or particle velocity resulted from the catastrophic fracture in an elastically stressed brittle media when the impact velocity reaches a critical value. In addition, the failure wave causes an increase in the rear surface velocity, which agrees well with experimental observations. The critical condition to generate failure wave and the speed of failure wave are also obtained.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Structural relaxation by isothermal annealing below the glass transition temperature is conducted on a Zr64.13Cu15.75Ni10.12Al10 bulk metallic glass. The effect of structural relaxation on thermal and mechanical properties was investigated by differential scanning calorimetry and instrumented nanoindentation. The recovery of the enthalpy in the DSC curves indicates that thermally unstable defects were annihilated through structural relaxation. During nanoindentation, the structural relaxation did not have a significant influence on the serrated plastic flow behavior. However, Structural relaxation shows an obvious effect in increasing both the hardness and elastic modulus, which is attributed to the annihilation of thermally unstable defects that resulted from the relaxation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Structural relaxation by isothermal annealing below the glass transition temperature is conducted on a Zr64.13Cu15.75Ni10.12Al10 bulk metallic glass. The effect of structural relaxation on thermal and mechanical properties was investigated by differential scanning calorimetry and instrumented nanoindentation. The recovery of the enthalpy in the DSC curves indicates that thermally unstable defects were annihilated through structural relaxation. During nanoindentation, the structural relaxation did not have a significant influence on the serrated plastic flow behavior. However, Structural relaxation shows an obvious effect in increasing both the hardness and elastic modulus, which is attributed to the annihilation of thermally unstable defects that resulted from the relaxation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A laboratory study of the rheology of mudflows in Hangzhou Bay, China, is reported in this paper. Both the steady and oscillatory (dynamic) rheological properties are studied using RMS-605 rheometer. A Dual-Bingham model is proposed for analyzing flow curves and compared with Worrall-Tuliani model. It is found that Dual-Bingham plastic rheological model is easier to implement than Worrall-Tuliani model and can provide satisfactory representations of the steady mudflows in Hangzhou Bay and other published data. The dependence of the yield stress and viscosity on sediment concentration is discussed based on the data from Hangzhou Bay mud and other published data. For the dynamic rheological properties of Hangzhou Bay mud, empirical expressions for elastic modulus and dynamic viscosity are provided in the form of exponential functions of sediment volume concentration, and comparisons with other published data also discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The decomposition of Spin(c)(4) gauge potential in terms of the Dirac 4-spinor is investigated, where an important characterizing equation Delta A(mu) = -lambda A(mu) has been discovered. Here, lambda is the vacuum expectation value of the spinor field, lambda = parallel to Phi parallel to(2), and A(mu) the twisting U(1) potential. It is found that when), takes constant values, the characterizing equation becomes an eigenvalue problem of the Laplacian operator. It provides a revenue to determine the modulus of the spinor field by using the Laplacian spectral theory. The above study could be useful in determining the spinor field and twisting potential in the Seiberg-Witten equations. Moreover, topological characteristic numbers of instantons in the self-dual sub-space are also discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

以子午岭土壤侵蚀与生态环境演变观测站长年观测的径流泥沙资料为基础 ,分析了林地及其开垦地不同侵蚀年限土壤的颗粒组成、>0 .2 5 mm水稳性团粒含量、抗剪强度和容重等土壤物理力学性质与土壤侵蚀强度的关系。研究结果表明 ,>0 .2 5 mm水稳性团粒含量对土壤侵蚀强度影响最大 ,其偏相关系数为 0 .972 8,其次为土壤的粗粉粒含量和抗剪强度。最后对 >0 .2 5 mm水稳性团粒含量和抗剪强度与土壤侵蚀强度的关系进行了分析 ,表明林地开垦后侵蚀第 1年和第 7年为土壤侵蚀强度加剧的转折点 ,说明了森林植被在防治黄土高原土壤侵蚀方面的作用。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

耕作侵蚀是国际上新近开展的一个研究领域。为了对中国黄土地区的耕作侵蚀规律进行定量描述 ,采用施放小立方块作为示踪材料进行耕作试验及测量来示踪和监测土壤运动 ,并通过相关分析与理论推导 ,对该地区的耕作侵蚀进行了模拟 ,获得了能够直接计算出坡面剖面任何一点净侵蚀模数的耕作侵蚀模型 ,结果表明 ,在采用当地由动物牵引的传统犁在坡面上自下而上进行往返横坡等高向下翻土耕作方式下 :1)一次耕作导致的耕层土壤朝坡向方向平均水平运动距离随坡度的变化表现为线性相关 ;2 )一次耕作导致的坡面剖面任何位置耕层断面的净侵蚀模数 ,受土壤容重、耕作深度、土壤与耕作条件决定的系数和地形曲率的影响。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Immersion in various media has different effect on the properties of dental composites, such as sorption, solubility, elution of unreacted monomers, flexural strength, and flexural elastic modulus. In the present work, the effect of immersion in various media and the relationship between the variation of these properties and the components of dental composite were investigated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biodegradable poly(e-caprolactone) (PCL) foams with a series of controlled structures were prepared by using chemical foaming method. The cell morphology was detected by scanning electron microscope (SEM). The compressive behavior of the foams was investigated by uniaxial compression test. The effect of density and structural parameters on the foam compressive behavior was analyzed. It was found that the relative compressive modulus has a power law relationship with relative density. Increasing of both the cell wall thickness and the cell density lead to higher compressive modulus of the foam; however, the cell size has no distinct effect on compressive behavior.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Novel bioactive glass (13G) nanoparticles/poly(L-lactide) (PLLA) composites were prepared as promising bone-repairing materials. The BG nanoparticles (Si:P:Ca = 29:13:58 weight ratio) of about 40 run diameter were prepared via the sol-gel method. In order to improve the phase compatibility between the polymer and the inorganic phase, PLLA (M-n = 9700 Da) was linked to the surface of the BG particles by diisocyanate. The grafting ratio of PLLA was in the vicinity of 20 wt.%. The grafting modification could improve the tensile strength, tensile modulus and impact energy of the composites by increasing the phase compatibility.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To obtain one biodegradable and electroactive polymer as the scaffold for tissue engineering, the multiblock copolymer PLAAP was designed and synthesized with the condensation polymerization of hydroxyl-capped poly(L-lactide) (PLA) and carboxyl-capped aniline pentamer (AP). The PLAAP copolymer exhibited excellent electroactivity, solubility, and biodegradability. At the same time, as one scaffold material, PLAAP copolymer possesses certain mechanical properties with the tensile strength of 3 MPa, tensile Young 's modulus of 32 MPa, and breaking elongation rate of 95%.