939 resultados para Mobile app
Resumo:
Inicialmente integrada en el piloto de gvSIG Mobile, la librería libLocation tiene como objetivo dotar a los proyectos gvSIG Desktop y gvSIG Mobile un acceso transparente a fuentes de localización. La librería se fundamenta en las especificaciones JSR-179 -API de localización para J2ME- y JSR-293 -API de localización para J2ME v2.0-, proporcionando una interfaz uniforme a diferentes fuentes de localización, mediante funciones de alto nivel. Asimismo, se extiende la funcionalidad de estas APIs para permitir la gestión de datos específicos del tipo de fuente de localización y el ajuste de parámetros de bajo nivel, además de incorporar métodos de localización adicionales, como la aplicación de correcciones vía protocolo NTRIP. La librería libLocation está actualmente en proceso de desarrollo y será publicada y liberada junto con la versión definitiva de gvSIG Mobile. Junto con libLocation se están desarrollando extensiones que permiten el acceso a esta librería desde gvSIG Desktop y gvSIG Mobile
Resumo:
gvSIG Mobile, la versión de gvSIG para dispositivos móviles presenta su nueva versión que incluye las esperadas funcionalidades de creación de nuevas entidades geográficas y utilización de formularios personalizados para edición de datos, además de nuevos formatos de datos vectoriales (GML, KML, GPX) y sistemas de referencia. Funcionalidades que se suman a las capacidades de visor de cartografía (ECW, SHP, WMS) y sistema de localización mediante GPS que ya posee. gvSIG Mobile está siendo desarrollado por Prodevelop, la Universitat de València e Iver para la Conselleria d’Infraestructures i Transport de la Generalitat Valenciana y se distribuye con una licencia GPL
Resumo:
The estimation of camera egomotion is a well established problem in computer vision. Many approaches have been proposed based on both the discrete and the differential epipolar constraint. The discrete case is mainly used in self-calibrated stereoscopic systems, whereas the differential case deals with a unique moving camera. The article surveys several methods for mobile robot egomotion estimation covering more than 0.5 million samples using synthetic data. Results from real data are also given
Resumo:
This research work deals with the problem of modeling and design of low level speed controller for the mobile robot PRIM. The main objective is to develop an effective educational tool. On one hand, the interests in using the open mobile platform PRIM consist in integrating several highly related subjects to the automatic control theory in an educational context, by embracing the subjects of communications, signal processing, sensor fusion and hardware design, amongst others. On the other hand, the idea is to implement useful navigation strategies such that the robot can be served as a mobile multimedia information point. It is in this context, when navigation strategies are oriented to goal achievement, that a local model predictive control is attained. Hence, such studies are presented as a very interesting control strategy in order to develop the future capabilities of the system
Resumo:
This paper is focused on the robot mobile platform PRIM (platform robot information multimedia). This robot has been made in order to cover two main needs of our group, on one hand the need for a full open mobile robotic platform that is very useful in fulfilling the teaching and research activity of our school community, and on the other hand with the idea of introducing an ethical product which would be useful as mobile multimedia information point as a service tool. This paper introduces exactly how the system is made up and explains just what the philosophy is behind this work. The navigation strategies and sensor fusion, where machine vision system is the most important one, are oriented towards goal achievement and are the key to the behaviour of the robot
Resumo:
This paper presents the use of a mobile robot platform as an innovative educational tool in order to promote and integrate different curriculum knowledge. Hence, it is presented the acquired experience within a summer course named ldquoapplied mobile roboticsrdquo. The main aim of the course is to integrate different subjects as electronics, programming, architecture, perception systems, communications, control and trajectory planning by using the educational open mobile robot platform PRIM. The summer course is addressed to a wide range of student profiles. However, it is of special interests to the students of electrical and computer engineering around their final academic year. The summer course consists of the theoretical and laboratory sessions, related to the following topics: design & programming of electronic devices, modelling and control systems, trajectory planning and control, and computer vision systems. Therefore, the clues for achieving a renewed path of progress in robotics are the integration of several knowledgeable fields, such as computing, communications, and control sciences, in order to perform a higher level reasoning and use decision tools with strong theoretical base
Resumo:
This work extends a previously developed research concerning about the use of local model predictive control in differential driven mobile robots. Hence, experimental results are presented as a way to improve the methodology by considering aspects as trajectory accuracy and time performance. In this sense, the cost function and the prediction horizon are important aspects to be considered. The aim of the present work is to test the control method by measuring trajectory tracking accuracy and time performance. Moreover, strategies for the integration with perception system and path planning are briefly introduced. In this sense, monocular image data can be used to plan safety trajectories by using goal attraction potential fields
Resumo:
This paper discusses predictive motion control of a MiRoSoT robot. The dynamic model of the robot is deduced by taking into account the whole process - robot, vision, control and transmission systems. Based on the obtained dynamic model, an integrated predictive control algorithm is proposed to position precisely with either stationary or moving obstacle avoidance. This objective is achieved automatically by introducing distant constraints into the open-loop optimization of control inputs. Simulation results demonstrate the feasibility of such control strategy for the deduced dynamic model
Resumo:
Pachler (2008) A socio-cultural ecology of mobile learning
Resumo:
The use of electronic documents is constantly growing and the necessity to implement an ad-hoc eCertificate which manages access to private information is not only required but also necessary. This paper presents a protocol for the management of electronic identities (eIDs), meant as a substitute for the paper-based IDs, in a mobile environment with a user-centric approach. Mobile devices have been chosen because they provide mobility, personal use and high computational complexity. The inherent user-centricity also allows the user to personally manage the ID information and to display only what is required. The chosen path to develop the protocol is to migrate the existing eCert technologies implemented by the Learning Societies Laboratory in Southampton. By comparing this protocol with the analysis of the eID problem domain, a new solution has been derived which is compatible with both systems without loss of features.
Resumo:
A summary of white papers on Android, IOS, Symbian and Series 40 Mobile Operating Systems
Resumo:
Introduction as part of UG TEL course