998 resultados para Micro-Tom
Resumo:
Electroless nickel (EN) and electroless nickel composite (ENC) coatings were deposited on aluminium alloy substrate, LM24. The micro abrasion test was conducted to study the wear behaviour of the coatings with the effect of SiC concentration. Microhardness of the coatings was tested also. The wear scars were analysed using optical microscope and scanning electron microscope (SEM). The wear resistance was found to be improved in composite coating that has higher microhardness as compared to particles free and the bare aluminium substrate. In as-deposited condition for the composite coating, the wear volume increases on increase in SiC percentage in the coating but is found to be minimum for lower SiC percentage. The increase in hardness on heat treatment at 400°C is due to the hardening or grain coarsening with the formation Ni3P.
Resumo:
To determine the effect of microbial metabolites on the release of root exudates from perennial ryegrass, seedlings were pulse labelled with [14C]-CO2 in the presence of a range of soil micro-organisms. Microbial inoculants were spatially separated from roots by Millipore membranes so that root infection did not occur. Using this technique, only microbial metabolites affected root exudation. The effect of microbial metabolites on carbon assimilation and distribution and root exudation was determined for 15 microbial species. Assimilation of a pulse label varied by over 3.5 fold, dependent on inoculant. Distribution of the label between roots and shoots also varied with inoculant, but the carbon pool that was most sensitive to inoculation was root exudation. In the absence of a microbial inoculant only 1% of assimilated label was exuded. Inoculation of the microcosms always caused an increase in exudation but the percentage exuded varied greatly, within the range of 3-34%. © 1995 Kluwer Academic Publishers.
Resumo:
Chloride-induced corrosion of steel in reinforced concrete structures is one of the main problems affecting their durability, but most previous research projects and case studies have focused on concretes without cracks or not subjected to any structural load. Although it has been recognised that structural cracks do influence the chloride transport and chloride induced corrosion in reinforced concrete structures, there is little published work on the influence of micro-cracks due to service loads on these properties. Therefore the effect of micro-cracks caused by loading on chloride transport into concrete was studied. Four different stress levels (0%, 25%, 50% and 75% of the stress at ultimate load – fu) were applied to 100 mm diameter concrete discs and chloride migration was measured using a bespoke test setup based on the NT BUILD 492 test. The effects of replacing Portland cement CEMI by ground granulated blast-furnace slag (GGBS), pulverised fuel ash (PFA) and silica fume (SF) on chloride transport in concrete under sustained loading were studied. The results have indicated that chloride migration coefficients changed little when the stress level was below 50% of the fu; however, it is desirable to keep concrete stress less than 25% fu if this is practical. The effect of removing the load on the change of chloride migration coefficient was also studied. A recovery of around 50% of the increased chloride migration coefficient was found in the case of concretes subjected to 75% of the fu when the load was removed.
Resumo:
During the last few decades, Metal-Organic Frameworks (MOFs), also known as Coordination Polymers, have attracted worldwide research attentions due to their incremented fascinating architectures and unique properties. These multidimensional materials have been potential applications in distinct areas: gas storage and separation, ion exchange, catalysis, magnetism, in optical sensors, among several others. The MOF research group at the University of Aveiro has prepared MOFs from the combination of phosphonate organic primary building units (PBUs) with, mainly, lanthanides. This thesis documents the last findings in this area involving the synthesis of multidimensional MOFs based on four di- or tripodal phosphonates ligands. The organic PBUs were designed and prepared by selecting and optimizing the best reaction conditions and synthetic routes. The self-assembly between phosphonate PBUs and rare-earths cations led to the formation of several 1D, 2D and 3D families of isotypical MOFs. The preparation of these materials was achieved by using distinct synthetic approaches: hydro(solvo)thermal, microwave- and ultrasound-assisted, one-pot and ionothermal synthesis. The selection of the organic PBUs showed to have an important role in the final architectures: while flexible phosphonate ligands afforded 1D, 2D and dense 3D structures, a large and rigid organic PBU isolated a porous 3D MOF. The crystal structure of these materials was successfully unveiled by powder or single-crystal X-ray diffraction. All multidimensional MOFs were characterized by standard solid-state techniques (FT-IR, electron microscopy (SEM and EDS), solid-state NMR, elemental and thermogravimetric analysis). Some MOF materials exhibited remarkable thermal stability and robustness up to ca. 400 ºC. The intrinsic properties of some MOFs were investigated. Photoluminescence studies revealed that the selected organic PBUs are suitable sensitizers of Tb3+ leading to the isolation of intense green-emitting materials. The suppression of the O−H quenchers by deuteration or dehydration processes improves substantially the photoluminescence of the optically-active Eu3+-based materials. Some MOF materials exhibited high heterogeneous catalytic activity and excellent regioselectivity in the ring-opening reaction of styrene oxide (PhEtO) with methanol (100% conversion of PhEtO at 55 ºC for 30 min). The porous MOF material was employed in gas separation processes. This compound showed the ability to separate propane over propylene. The ionexchanged form of this material (containing K+ cations into its network) exhibited higher affinity for CO2 being capable to separate acetylene over this environment non-friendly gas.
Resumo:
In the present work multilayered micro/nanocrystalline (MCD/NCD) diamond coatings were developed by Hot Filament Chemical Vapour Deposition (HFCVD). The aim was to minimize the surface roughness with a top NCD layer, to maximize adhesion onto the Si3N4 ceramic substrates with a starting MCD coating and to improve the mechanical resistance by the presence of MCD/NCD interfaces in these composite coatings. This set of features assures high wear resistance and low friction coefficients which, combined to diamond biocompatibility, set this material as ideal for biotribological applications. The deposition parameters of MCD were optimized using the Taguchi method, and two varieties of NCD were used: NCD-1, grown in a methane rich gas phase, and NCD-2 where a third gas, Argon, was added to the gas mixture. The best combination of surface pre-treatments in the Si3N4 substrates is obtained by polishing the substrates with a 15 μm diamond slurry, further dry etching with CF4 plasma for 10 minutes and final ultrasonic seeding in a diamond powder suspension in ethanol for 1 hour. The interfaces of the multilayered CVD diamond films were characterized with high detail using HRTEM, STEM-EDX and EELS. The results show that at the transition from MCD to NCD a thin precursor graphitic film is formed. On the contrary, the transition of the NCD to MCD grade is free of carbon structures other than diamond, as a result of the richer atomic hydrogen content and of the higher substrate temperature for MCD deposition. At those transitions, WC nanoparticles were found due to contamination from the filament, being also present at the first interface of the MCD layer with the silicon nitride substrate. In order to study the adhesion and mechanical resistance of the diamond coatings, indentation and particle jet blasting tests were conducted, as well as tribological experiments with homologous pairs. Indentation tests proved the superior behaviour of the multilayered coatings that attained a load of 800 N without delamination, when compared to the mono and bilayered ones. The multilayered diamond coatings also reveal the best solid particle erosion resistance, due to the MCD/NCD interfaces that act as crack deflectors. These results were confirmed by an analytical model on the stress field distribution based on the von Mises criterion. Regarding the tribological testing under dry sliding, multilayered coatings also exhibit the highest critical load values (200N for Multilayers with NCD-2). Low friction coefficient values in the range μ=0.02- 0.09 and wear coefficient values in the order of ~10-7 mm3 N-1 m-1 were obtained for the ball and flat specimens indicating a mild wear regime. Under lubrication with physiological fluids (HBSS e FBS), lower wear coefficient values ~10-9-10-8 mm3 N-1 m-1) were achieved, governed by the initial surface roughness and the effective contact pressure.
Resumo:
This work reports one possible way to develop new functional coatings used to increase the life time of metallic structures. The functionalities selected and attributed to model coatings in the frame of this work were corrosion protection, self-sensing and prevention of fouling (antifouling). The way used to confer those functionalities to coatings was based on the encapsulation of active compounds (corrosion inhibitors, pH indicators and biocides) in micro and nanocontainers followed by their incorporation into the coating matrices. To confer active corrosion protection, one corrosion inhibitor (2-mercaptobenzothiazole, MBT) was encapsulated in two different containers, firstly in silica nanocapsules (SiNC) and in polyurea microcapsules (PU-MC). The incorporation of both containers in different models coatings shows a significant improvement in the corrosion protection of aluminum alloy 2024 (AA2024). Following the same approach, SiNC and PU-MC were also used for the encapsulation of phenolphthalein (one well known pH indicator) to introduce sensing properties in polymeric coatings. SiNC and PU-MC containing phenolphthalein acted as corrosion sensor, showing a pink coloration due to the beginning of cathodic reaction, resulting in a pH increase identified by those capsules. Their sensing performance was proved in suspension and when integrated in coatings for aluminium alloy 2024 and magnesium alloy AZ31. In a similar way, the biocide activity (antifouling) was assigned to two polymeric matrices using SiNC for encapsulation of one biocide (Dichloro-2-octyl-2H-isothiazol-3-one, DCOIT) and also SiNC-MBT was tested as biocide. The antifouling activity of those two encapsulated compounds was assessed through inhibition and consequent decrease in the bioluminescence of modified E. coli. That effect was verified in suspension and when incorporated in coatings for AISI 1008 carbon steel. The developed micro and nanocontainers presented the desired performance, allowing the introduction of new functionalities to model coatings, showing potential to be used as functional additives in the next generation of multifunctional coatings.
Resumo:
Taking up Hopkins and Dixon’s (2006) call to attend to the micro-politics of everyday constructions of space and place, which necessarily involves psychological concepts such as identity, belonging and attachment, this paper aims to show how a critical socio-cognitive approach to discourse analysis is an effective means of unpacking the ways in which versions of place are (re)produced and negotiated through discursive practices, and in particular the ways in which ‘legitimate’ collective identities are constructed in relation to place. I focus on the contemporary social phenomenon of lifestyle migration. Within Europe, this typically involves relatively affluent northern Europeans moving to destinations in southern Europe that are strongly linked to tourism. Although lifestyle migrants are generally viewed by their hosts as ‘desirable’ migrants due to their perceived economic and socio-cultural capital, their integration into destination communities is often minimal. The question arises as to how these migrants construct modes of belonging in relation to their adopted home-place and how they relate to the other social groups with whom they share it. Using texts from a variety of sources, including in-depth interviews with British migrants in Portugal, I explore not only how migrants position themselves (and others) discursively in relation to places, but also how they are already positioned by discursive practices in the public sphere. I also examine to what extent the construction of a ‘legitimate’ mode of belonging involves the construction of intergroup cooperation within that place.
Resumo:
A região montanhosa do noroeste de Portugal é conhecida há muito pelos seus cantos polifónicos femininos, que apresentam microvariações duma aldeia para outra e estavam tradicionalmente ligados à cultura dos cereais (centeio e milho). Há muito que a aldeia de São João do Campo (concelho de Terras de Bouro, distrito de Braga) não pratica a agricultura, mas as suas mulheres continuam a cantar em polifonia de modo perfeito, usando as vozes como actividade recreativa e transmitindo às filhas a arte de cantar. Uma das razões para a idealização dos seus cantos poderia ser a desaparição da aldeia vizinha, Vilarinho da Furna, engolida pelas águas duma barragem. Em São João do Campo convergem, no entanto, outras “tradições” musicais: a dos antigos habitantes de Vilarinho da Furna, que comemoram musicalmente todos os anos a sua aldeia desaparecida; e a dos habitantes duma localidade vizinha, Aboim da Nóbrega, que à aldeia de São João do Campo vêm entoar cantos petitórios de chuva, dedicados a São João. O amor pela terra é aqui propício a práticas musicais que, todas elas, se reclamam da “tradição”, embora sendo radicalmente diferentes,mesmo, heteróclitas. Em São João do Campo convergiram também diversas experiências “de campo”: a de Virgílio Pereira, a de Michel Giacometti e a minha, através das quais a noção de “tradição” é vista de modo diferente. Além de determinar as diversas funções dos cantos polifónicos femininos (ceifa, malha do centeio, monda, desfolhada do milho, secagem do linho, artesanato, festas...), este artigo levanta também a questão de como definir “a tradição”.
Resumo:
No presente Trabalho foi efectivado um Estudo sobre a viabilidade técnico-económica sobre o aproveitamento eficiente da energia hídrica excedentária nas condutas adutoras dos sistemas de captação, tratamento e distribuição de águas, através da implementação, imediatamente a montante das Estações de Tratamento de Águas, de miniturbinas hidráulicas incorporadas nas condutas e acopladas a geradores de energia eléctrica assíncronos. Esta energia excedentária integra-se no duplo conceito de energia renovável e de energia alternativa – renovável porque a fonte primária é a água acumulada nas albufeiras das barragens; alternativa porque a produção de energia eléctrica é utilizada em consumo nas Instalações de Tratamento de Águas (ETA) em alternância ou/e em simultâneo com a energia da rede. Este Estudo resultou de uma proposta dirigia a Águas do Algarve, S.A. cuja aceitação culminou na elaboração do Projecto Base da Central Mini-Hídrica (CMH) do Beliche, localizada na ETA do Beliche (Sistema Multimunicipal de Abastecimento de Águas do Algarve). A construção da CMH foi da responsabilidade da empresa Electrolagos, CRL, e foi concluída nos fins de 2010, encontrando-se actualmente em plena exploração. Os resultados já obtidos permitem concluir que a instalação é eficiente, energética e economicamente, excedendo, nesta primeira fase, as expectativas relativamente à excelente integração no sistema de auto-regulação do caudal de entrada. O Projecto é inovador, não só porque aplica diversos equipamentos standards de utilizações convencionalmente diferentes, mas também porque congrega essa diversidade num único modelo. As inovações fundamentais consistem em: -Utilização de bombas hidráulicas tradicionais a funcionar como miniturbinas, sistema PaT (Pumb as Turtine) de recente aplicação e em plena investigação; -Utilização de Máquinas Assíncronas a funcionar como geradores de energia eléctrica a 50Hz; -Injecção directa da energia produzida na Instalação e/ou na Rede de Distribuição sem sistema de conversão. A integração directa da MCH na adutora também constitui uma inovação pois, tradicionalmente, estas instalações são isoladas (sistema ‘ilha’) ou em paralelo ou ainda em derivação relativamente a condutas. Esta inovadora integração implicou testes pormenorizados das canalizações de adução e de impulsão, assim como a escolha de equipamentos e acessórios adequados, de modo a não interferir e perturbar significativamente os parâmetros nominais do funcionamento normal da ETA (caudais; velocidades; pressões). O Trabalho aqui apresentado está totalmente em linha com a Estratégia Nacional para a Energia (Resolução 29/2010 do concelho de Ministros) no sentido que contribui para a redução da dependência energética externa através do uso de energias renováveis e para a redução das emissões de CO2.
Resumo:
Dissertação de mestrado, Psicologia Clínica e da Saúde, Faculdade de Ciências Humanas e Sociais, Universidade do Algarve, 2015