941 resultados para Matrix metalloproteinase 9
Resumo:
Reported homocysteine (HCY) concentrations in human serum show poor concordance amongst laboratories due to endogenous HCY in the matrices used for assay calibrators and QCs. Hence, we have developed a fully validated LC–MS/MS method for measurement of HCY concentrations in human serum samples that addresses this issue by minimising matrix effects. We used small volumes (20 μL) of 2% Bovine Serum Albumin (BSA) as surrogate matrix for making calibrators and QCs with concentrations adjusted for the endogenous HCY concentration in the surrogate matrix using the method of standard additions. To aliquots (20 μL) of human serum samples, calibrators or QCs, were added HCY-d4 (internal standard) and tris-(2-carboxyethyl) phosphine hydrochloride (TCEP) as reducing agent. After protein precipitation, diluted supernatants were injected into the LC–MS/MS. Calibration curves were linear; QCs were accurate (5.6% deviation from nominal), precise (CV% ≤ 9.6%), stable for four freeze–thaw cycles, and when stored at room temperature for 5 h or at −80 °C (27 days). Recoveries from QCs in surrogate matrix or pooled human serum were 91.9 and 95.9%, respectively. There was no matrix effect using 6 different individual serum samples including one that was haemolysed. Our LC–MS/MS method has satisfied all of the validation criteria of the 2012 EMA guideline.
Resumo:
Like many other cataclysmic events September 11, a day now popularly believed to have 'changed the world', has become a topic taken up by children's writers. This thesis, titled The Whole World Shook: Ethnic, National and Heroic Identities in Children's Fiction About 9/11, examines how cultural identities are constructed within fictional texts for young people written about the attacks on the Twin Towers. It identifies three significant identity categories encoded in 9/11 books for children: ethnic identities, national identities, and heroic identities. The thesis argues that the identities formed within the selected children's texts are in flux, privileging performances of identities that are contingent on post-9/11 politics. This study is located within the field of children's literature criticism, which supports the understanding that children's books, like all texts, play a role in the production of identities. Children's literature is highly significant both in its pedagogical intent (to instruct and induct children into cultural practices and beliefs) and in its obscurity (in making the complex simple enough for children, and from sometimes intentionally shying away from difficult things). This literary criticism informed the study that the texts, if they were to be written at all, would be complex, varied and most likely as ambiguous and contradictory as the responses to the attacks on New York themselves. The theoretical framework for this thesis draws on a range of critical theories including literary theory, cultural studies, studies of performativity and postmodernism. This critical framework informs the approach by providing ways for: (i) understanding how political and ideological work is performed in children's literature; (ii) interrogating the constructed nature of cultural identities; (iii) developing a nuanced methodology for carrying out a close textual analysis. The textual analysis examines a representative sample of children's texts about 9/11, including picture books, young adult fiction, and a selection of DC Comics. Each chapter focuses on a different though related identity category. Chapter Four examines the performance of ethnic identities and race politics within a sample of picture books and young adult fiction; Chapter Five analyses the construction of collective, national identities in another set of texts; and Chapter Six does analytic work on a third set of texts, demonstrating the strategic performance of particular kinds of heroic identities. I argue that performances of cultural identities constructed in these texts draw on familiar versions of identities as well as contribute to new ones. These textual constructions can be seen as offering some certainties in increasingly uncertain times. The study finds, in its sample of books a co-mingling of xenophobia and tolerance; a binaried competition between good and evil and global harmony and national insularity; and a lauding of both the commonplace hero and the super-human. Being a recent corpus of texts about 9/11, these texts provide information on the kinds of 'selves' that appear to be privileged in the West since 2001. The thesis concludes that the shifting identities evident in texts that are being produced for children about 9/11 offer implicit and explicit accounts of what constitute good citizenship, loyalty to nation and community, and desirable attributes in a Western post-9/11 context. This thesis makes an original contribution to the field of children's literature by providing a focussed and sustained analysis of how texts for children about 9/11 contribute to formations of identity in these complex times of cultural unease and global unrest.
Resumo:
Welcome to the Evaluation of course matrix. This matrix is designed for highly qualified discipline experts to evaluate their course, major or unit in a systemic manner. The primary purpose of the Evaluation of course matrix is to provide a tool that a group of academic staff at universities can collaboratively review the assessment within a course, major or unit annually. The annual review will result in you being ready for an external curricula review at any point in time. This tool is designed for use in a workshop format with one, two or more academic staff, and will lead to an action plan for implementation. I hope you find this tool useful in your assessment review.
Resumo:
This paper reports on the experimental testing of oxygen-enriched porous fuel injection in a scramjet engine. Fuel was injected via inlet mounted, oxide-based ceramic matrix composite (CMC) injectors on both flow path surfaces that covered a total of 9.2 % of the intake surface area. All experiments were performed at an enthalpy of 3.93−4.25±3.2% MJ kg−1, flight Mach number 9.2–9.6 and an equivalence ratio of 0.493±3%. At this condition, the engine was shown to be on the verge of achieving appreciable combustion. Oxygen was then added to the fuel prior to injection such that two distinct enrichment levels were achieved. Combustion was found to increase, by as much as 40 % in terms of combustion-induced pressure rise, over the fuel-only case with increasing oxygen enrichment. Further, the onset of combustion was found to move upstream with increasing levels of oxygen enrichment. Thrust, both uninstalled and specific, and specific impulse were found to be improved with oxygen enrichment. Enhanced fuel–air mixing due to the pre-mixing of oxygen with the fuel together with the porous fuel injection are believed to be the main contributors to the observed enhanced performance of the tested engine.
Resumo:
Alignment-free methods, in which shared properties of sub-sequences (e.g. identity or match length) are extracted and used to compute a distance matrix, have recently been explored for phylogenetic inference. However, the scalability and robustness of these methods to key evolutionary processes remain to be investigated. Here, using simulated sequence sets of various sizes in both nucleotides and amino acids, we systematically assess the accuracy of phylogenetic inference using an alignment-free approach, based on D2 statistics, under different evolutionary scenarios. We find that compared to a multiple sequence alignment approach, D2 methods are more robust against among-site rate heterogeneity, compositional biases, genetic rearrangements and insertions/deletions, but are more sensitive to recent sequence divergence and sequence truncation. Across diverse empirical datasets, the alignment-free methods perform well for sequences sharing low divergence, at greater computation speed. Our findings provide strong evidence for the scalability and the potential use of alignment-free methods in large-scale phylogenomics.
Resumo:
Traditional sensitivity and elasticity analyses of matrix population models have been used to inform management decisions, but they ignore the economic costs of manipulating vital rates. For example, the growth rate of a population is often most sensitive to changes in adult survival rate, but this does not mean that increasing that rate is the best option for managing the population because it may be much more expensive than other options. To explore how managers should optimize their manipulation of vital rates, we incorporated the cost of changing those rates into matrix population models. We derived analytic expressions for locations in parameter space where managers should shift between management of fecundity and survival, for the balance between fecundity and survival management at those boundaries, and for the allocation of management resources to sustain that optimal balance. For simple matrices, the optimal budget allocation can often be expressed as simple functions of vital rates and the relative costs of changing them. We applied our method to management of the Helmeted Honeyeater (Lichenostomus melanops cassidix; an endangered Australian bird) and the koala (Phascolarctos cinereus) as examples. Our method showed that cost-efficient management of the Helmeted Honeyeater should focus on increasing fecundity via nest protection, whereas optimal koala management should focus on manipulating both fecundity and survival simultaneously. These findings are contrary to the cost-negligent recommendations of elasticity analysis, which would suggest focusing on managing survival in both cases. A further investigation of Helmeted Honeyeater management options, based on an individual-based model incorporating density dependence, spatial structure, and environmental stochasticity, confirmed that fecundity management was the most cost-effective strategy. Our results demonstrate that decisions that ignore economic factors will reduce management efficiency. ©2006 Society for Conservation Biology.
Resumo:
The DC9 workshop takes place on June 27, 2015 in Limerick, Ireland and is titled “Hackable Cities: From Subversive City Making to Systemic Change”. The notion of “hacking” originates from the world of media technologies but is increasingly often being used for creative ideals and practices of city making. “City hacking” evokes more participatory, inclusive, decentralized, playful and subversive alternatives to often top-down ICT implementations in smart city making. However, these discourses about “hacking the city” are used ambiguously and are loaded with various ideological presumptions, which makes the term also problematic. For some “urban hacking” is about empowering citizens to organize around communal issues and perform aesthetic urban interventions. For others it raises questions about governance: what kind of “city hacks” should be encouraged or not, and who decides? Can city hacking be curated? For yet others, trendy participatory buzzwords like these are masquerades for deeply libertarian neoliberal values. Furthermore, a question is how “city hacking” may mature from the tactical level of smart and often playful interventions to the strategic level of enduring impact. The Digital Cities 9 workshop welcomes papers that explore the idea of “hackable city making” in constructive and critical ways.
Resumo:
Directly after the horrific events of September 11, 2001, many Americans were saying the same thing: the world has changed forever. They were overwhelmed with a sense that “the party was over.” It was clear that America had lost its innocence; it now had to “grow up.” Much of the fiction produced since 9/11 and with 9/11 at its core provides evidence of the larger cultural belief that September 11 was a turning point (much like adolescence) from which there is no turning back. In this chapter, I examine how three post-9/11 novels—Lorrie Moore’s A Gate at the Stairs, Joyce Maynard’s The Usual Rules, and John Updike’s Terrorist—position readers to understand September 11 as a moment that changed how young Americans come of age.
Resumo:
The efficient computation of matrix function vector products has become an important area of research in recent times, driven in particular by two important applications: the numerical solution of fractional partial differential equations and the integration of large systems of ordinary differential equations. In this work we consider a problem that combines these two applications, in the form of a numerical solution algorithm for fractional reaction diffusion equations that after spatial discretisation, is advanced in time using the exponential Euler method. We focus on the efficient implementation of the algorithm on Graphics Processing Units (GPU), as we wish to make use of the increased computational power available with this hardware. We compute the matrix function vector products using the contour integration method in [N. Hale, N. Higham, and L. Trefethen. Computing Aα, log(A), and related matrix functions by contour integrals. SIAM J. Numer. Anal., 46(5):2505–2523, 2008]. Multiple levels of preconditioning are applied to reduce the GPU memory footprint and to further accelerate convergence. We also derive an error bound for the convergence of the contour integral method that allows us to pre-determine the appropriate number of quadrature points. Results are presented that demonstrate the effectiveness of the method for large two-dimensional problems, showing a speedup of more than an order of magnitude compared to a CPU-only implementation.
Resumo:
The matrix of volcaniclastic kimberlite (VK) from the Muskox pipe (Northern Slave Province, Nunavut, Canada) is interpreted to represent an overprint of an original clastic matrix. Muskox VK is subdivided into three different matrix mineral assemblages that reflect differences in the proportions of original primary matrix constituents, temperature of formation and nature of the altering fluids. Using whole rock X-ray fluorescence (XRF), whole rock X-ray diffraction (XRD), microprobe analyses, back-scatter electron (BSE) imaging, petrography and core logging, we find that most matrix minerals (serpentine, phlogopite, chlorite, saponite, monticellite, Fe-Ti oxides and calcite) lack either primary igneous or primary clastic textures. The mineralogy and textures are most consistent with formation through alteration overprinting of an original clastic matrix that form by retrograde reactions as the deposit cools, or, in the case of calcite, by precipitation from Ca-bearing fluids into a secondary porosity. The first mineral assemblage consists largely of serpentine, phlogopite, calcite, Fe-Ti oxides and monticellite and occurs in VK with relatively fresh framework clasts. Alteration reactions, driven by deuteric fluids derived from the juvenile constituents, promote the crystallisation of minerals that indicate relatively high temperatures of formation (> 400 °C). Lower-temperature minerals are not present because permeability was occluded before the deposit cooled to low temperatures, thus shielding the facies from further interaction with fluids. The other two matrix mineral assemblages consist largely of serpentine, phlogopite, calcite, +/- diopside, and +/- chlorite. They form in VK that contains more country rock, which may have caused the deposit to be cooler upon emplacement. Most framework components are completely altered, suggesting that larger volumes of fluids drove the alteration reactions. These fluids were likely of meteoric provenance and became heated by the volcaniclastic debris when they percolated into the VK infill. Most alteration reactions ceased at temperatures > 200 °C, as indicated by the absence or paucity of lower-temperature phases in most samples, such as saponite. Recognition that Muskox VK contains an original clastic matrix is a necessary first step for evaluating the textural configuration, which is important for reconstructing the physical processes responsible for the formation of the deposit.
Resumo:
Genetic correlation (rg) analysis determines how much of the correlation between two measures is due to common genetic influences. In an analysis of 4 Tesla diffusion tensor images (DTI) from 531 healthy young adult twins and their siblings, we generalized the concept of genetic correlation to determine common genetic influences on white matter integrity, measured by fractional anisotropy (FA), at all points of the brain, yielding an NxN genetic correlation matrix rg(x,y) between FA values at all pairs of voxels in the brain. With hierarchical clustering, we identified brain regions with relatively homogeneous genetic determinants, to boost the power to identify causal single nucleotide polymorphisms (SNP). We applied genome-wide association (GWA) to assess associations between 529,497 SNPs and FA in clusters defined by hubs of the clustered genetic correlation matrix. We identified a network of genes, with a scale-free topology, that influences white matter integrity over multiple brain regions.
Resumo:
Pt/TiO2 sensitized by the cheap and organic ortho-dihydroxyl-9,10-anthraquinone dyes, such as Alizarin and Alizarin Red, achieved a TON of approximately 10 000 (TOF > 250 h−1 for the first ten hours) during >80 hours of visible light irradiation (>420 nm) for photocatalytic hydrogen evolution when triethanolamine was used as the sacrificial donor. The stability and activity enhancements can be attributed to the two highly serviceable redox reactions involving the 9,10-dicarbonyl and ortho-dihydroxyl groups of the anthracene ring, respectively
Resumo:
The stability of five illicit drug markers in wastewater was tested under different sewer conditions using laboratory-scale sewer reactors. Wastewater was spiked with deuterium labelled isotopes of cocaine, benzoyl ecgonine, methamphetamine, MDMA and 6-acetyl morphine to avoid interference from the native isotopes already present in the wastewater matrix. The sewer reactors were operated at 20 °C and pH 7.5, and wastewater was sampled at 0, 0.25, 0.5, 1, 2, 3, 6, 9 and 12 h to measure the transformation/degradation of these marker compounds. The results showed that while methamphetamine, MDMA and benzoyl ecgonine were stable in the sewer reactors, cocaine and 6-acetyl morphine degraded quickly. Their degradation rates are significantly higher than the values reportedly measured in wastewater alone (without biofilms). All the degradation processes followed first order kinetics. Benzoyl ecgonine and morphine were also formed from the degradation of cocaine and 6-acetyl morphine, respectively, with stable formation rates throughout the test. These findings suggest that, in sewage epidemiology, it is essential to have relevant information of the sewer system (i.e. type of sewer, hydraulic retention time) in order to accurately back-estimate the consumption of illicit drugs. More research is required to look into detailed sewer conditions (e.g. temperature, pH and ratio of biofilm area to wastewater volume among others) to identify their effects on the fate of illicit drug markers in sewer systems.