981 resultados para Mantle fluids
Resumo:
Trace element concentrations and combined Sr- and Nd-isotope compositions were determined on stromatolitic carbonates (microbialites) from the 2.52 Ga Campbellrand carbonate platform (South Africa). Shale-normalised rare earth element and yttrium patterns of the ancient samples are similar to those of modern seawater in having positive La and Y anomalies and in being depleted in light rare earth elements. In contrast to modem seawater (and microbialite proxies), the 2.52 Ga samples lack a negative Ce anomaly but possess a positive Eu anomaly. These latter trace element characteristics are interpreted to reflect anoxic deep ocean waters where, unlike today, hydrothermal Fe input was not oxidised, and scavenged and rare earth elements were not coprecipitated with Fe-oxyhydroxides. The persistence of a positive Eu anomaly in relatively shallow Campbellrand platform waters indicates a dramatic reversal from hydrothermally dominated (Archaean) to continental erosion-dominated (Phanerozoic) rare earth element flux ratio. The dominant hydrothermal input is also expressed in the initial Sr- and Nd-isotope ratios. There is collinear variation in Sr-Nd systematics, which range from primitive values (Sr-87/Sr-86 of 0.702386 and epsilon (Nd) of +2.1) to more evolved crustal ratios. Mixing calculations show that the range in trace element ratios (e.g., Y/Ho) and initial isotope ratios is not a result of contamination by trapped sediment, but that the chemical band isotopic variation reflects carbonate deposition in an environment where different water masses mixed. Calculated Nd flux ratios yield a hydrothermal input into the 2.52 Ga oceans one order of magnitude larger than continental input. Such a change in flux ratio most likely required substantially reduced continental inputs, which could, in turn, reflect a plate tectonic causation (e.g., reduced topography or expansion of epicontinental seas). Copyright (C) 2001 Elsevier Science Ltd.
Resumo:
We demonstrate that the dynamics of an autonomous chaotic class C laser can be controlled to a periodic state via external modulation of the pump. In the absence of modulation, above the chaos threshold, the laser exhibits Lorenz-like chaotic pulsations. The average amplitude and frequency of these pulsations depend on the pump power. We find that there exist parameter windows where modulation of the pump power extinguishes the chaos in favor of simpler periodic behavior. Moreover we find a number of locking ratios between the pump and laser output follow the Farey sequence.
Resumo:
In this paper, a new technique for predicting multicomponent adsorption equilibria of supercritical fluids in microporous carbons is presented. In difference from adsorption on a surface, which is a function of the fluid-solid interaction only, adsorption in porous media is influenced by the proximity of the pore walls, resulting in the enhancement in adsorption affinity. The degree of this enhancement is different for different adsorbates, and it increases with a decrease in pore size. The theory is applied to a number of carbonaceous systems with good success.
Resumo:
A simple method to characterize the micro and mesoporous carbon media is discussed. In this method, the overall adsorption quantity is the sum of capacities of all pores (slit shape is assumed), in each of which the process of adsorption occurs in two sequential steps: the multi-layering followed by pore filling steps. The critical factor in these two steps is the enhancement of the pressure of occluded 'free' molecules in the pore as well as the enhancement of the adsorption layer thickness. Both of these enhancements are due to the overlapping of the potential fields contributed by the two opposite walls. The classical BET and modified Kelvin equations are assumed to be applicable for the two steps mentioned above, with the allowance for the enhanced pore pressure, the enhanced adsorption energy and the enhanced BET constant,all of which vary with pore width. The method is then applied to data of many carbon samples of different sources to derive their respective pore size distributions, which are compared with those obtained from DFT analysis. Similar pore size distributions (PSDs) are observed although our method gives sharper distribution. Furthermore, we use our theory to analyze adsorption data of nitrogen at 77 K and that of benzene at 303 K (ambient temperature). The PSDs derived from these two different probe molecules are similar, with some small differences that could be attributed to the molecular properties, such as the collision diameter. Permeation characteristics of sub-critical fluids are also discussed in this paper. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The extant lungfish, including three genera, the Australian, South American and African lungfishes, retain a dentition that appeared first in the Devonian, in some of the oldest members of this group. The dentition consists of permanent tooth plates with persistent cusps that appear early in development of the fish. The cusps, separate early in development, form ridges that are arranged in a radiating pattern, and fusion of the cusps to each other and to the underlying jaw bone produces a tooth plate. The lungfish dentition is based on a template of mantle dentine that surrounds bone trabeculae enclosed in the tooth plate. The mantle layer is covered by enamel. In most derived dipnoans, this framework encloses two further forms of dentine, known as interdenteonal and circumdenteonal dentines. The tooth plates grow in area and in depth without evidence of macroscopic resorption of dentines or of enamel. Increase in size and changes in shape of lungfish tooth plates is actually achieved by a process involving microscopic remodelling of the bone contained within the margin of each tooth plate, and the later addition of new dentines and enamel within and around the bone. This is accomplished without creating weakness in the structural integrity of the tooth plate and bone complex, and proceeds in line with growth and remodelling of the jaw bones attached to the tooth plates.
Resumo:
We demonstrate that a system obeying the complex Lorenz equations in the deep chaotic regime can be controlled to periodic behavior by applying a modulation to the pump parameter. For arbitrary modulation frequency and amplitude there is no obvious simplification of the dynamics. However, we find that there are numerous windows where the chaotic system has been controlled to different periodic behaviors. The widths of these windows in parameter space are narrow, and the positions are related to the ratio of the modulation frequency of the pump to the average pulsation frequency of the output variable. These results are in good agreement with observations previously made in a far-infrared laser system.
Resumo:
Direct numerical simulation (DNS) of turbulent flow around a rotating cylinder with two backward-facing steps axisymmetrically mounted in the circumferential direction was performed and compared with DNS of plane backward-facing step flow (PBSF) of Le [J. Fluid Mech. 330, 349 (1997)]. The original motivation of this work stemmed from the efforts to design a simple device which can generate flows of high turbulence intensity at low cost for corrosion researchers. It turned out that the current flow shows flow structures quite similar to those of PBSF downstream of the step, even though configurations of the two flows are totally different from one another. The stepped cylinder appears to be a cost-effective tool in the generation of flow structures similar to those of PBSF. (C) 2002 American Institute of Physics.
Resumo:
Extracts of the dorid nudibranch Asteronotus cespitosus from two geographically separate regions of Australia and from the Philippines were compared using thin-layer, high-performance liquid and gas chromatography and H-1 NMR analysis. Halogenated metabolites were detected in all mollusk specimens. The major component detected in digestive tissue of specimens from the Great Barrier Reef in northeastern Australia was 4,6-dibromo2-(2',4'-dibromophenoxy)phenol (1), with minor amounts of 3,5-dibromo-2(3',5'-dibromo-20-methoxyphenoxy)phenol (2). In a specimen collected from northwestern Australia, only 3,5-dibromo-2-(3',5'-dibromo-2'-methoxyphenoxy)phenol was found. The specimen from the Philippines contained 2,3,4,5-tetrabromo-6-(2'-bromophenoxy) phenol (3) together with a novel chlorinated pyrrolidone (4). In addition, the sesquiterpenes dehydroherbadysidolide (5) and spirodysin (6) were detected in the digestive organs and mantle tissue of the nudibranchs from the Great Barrier Reef and from the Philippines, whereas these chemicals were not found in the specimen from northwestern Australia. All of the chemicals (1-3,5, and 6) have previously been isolated from the sponge Dysidea herbacea, as have chlorinated metabolites related to 4. This is the first time the characteristic halogenated metabolites that typify Dysidea herbacea have been reported from a carnivorous mollusk, which implies a dietary origin as opposed to de novo synthesis.
Resumo:
Chronic alcoholic myopathy affects up to two-thirds of all alcohol misusers and is characterized by selective atrophy of Type If (glycolytic, fast-twitch, anaerobic) fibers. In contrast, the Type I fibers (oxidative, slow-twitch, aerobic) are relatively protected. Alcohol increases the concentration of cholesterol hydroperoxides and malondialdehyde-protein adducts, though protein-carbonyl concentration levels do not appear to be overtly increased and may actually decrease in some studies. In alcoholics, plasma concentrations of a-tocopherol may be reduced in myopathic patients. However, a-tocopherol supplementation has failed to prevent either the loss of skeletal muscle protein or the reductions in protein synthesis in alcohol-dosed animals. The evidence for increased oxidative stress in alcohol-exposed skeletal muscle is thus inconsistent. Further work into the role of ROS in alcoholic myopathy is clearly warranted. (C) 2002 Elsevier Science Inc.
Resumo:
Quantitative laser ablation (LA)-ICP-MS analyses of fluid inclusions, trace element chemistry of sulfides, stable isotope (S), and Pb isotopes have been used to discriminate the formation of two contrasting mineralization styles and to evaluate the origin of the Cu and Au at Mt Morgan. The Mt Morgan Au-Cu deposit is hosted by Devonian felsic volcanic rocks that have been intruded by multiple phases of the Mt Morgan Tonalite, a low-K, low-Al2O3 tonalite-trondhjemite-dacite (TTD) complex. An early, barren massive sulfide mineralization with stringer veins is conforming to VHMS sub-seafloor replacement processes, whereas the high-grade Au-Cu. ore is associated with a later quartz-chalcopyrite-pyrite stock work mineralization that is related to intrusive phases of the Tonalite complex. LA-ICP-MS fluid inclusion analyses reveal high As (avg. 8850 ppm) and Sb (avg. 140 ppm) for the Au-Cu mineralization and 5 to 10 times higher Cu concentration than in the fluids associated with the massive pyrite mineralization. Overall, the hydrothermal system of Mt Morgan is characterized by low average fluid salinities in both mineralization styles (45-80% seawater salinity) and temperatures of 210 to 270 degreesC estimated from fluid inclusions. Laser Raman Spectroscopic analysis indicates a consistent and uniform array Of CO2-bearing fluids. Comparison with active submarine hydrothermal vents shows an enrichment of the Mt Morgan fluids in base metals. Therefore, a seawater-dominated fluid is assumed for the barren massive sulfide mineralization, whereas magmatic volatile contributions are implied for the intrusive related mineralization. Condensation of magmatic vapor into a seawater-dominated environment explains the CO2 occurrence, the low salinities, and the enriched base and precious metal fluid composition that is associated with the Au-Cu. mineralization. The sulfur isotope signature of pyrite and chalcopyrite is composed of fractionated Devonian seawater and oxidized magmatic fluids or remobilized sulfur from existing sulfides. Pb isotopes indicate that Au and Cu. originated from the Mt Morgan intrusions and a particular volcanic strata that shows elevated Cu background. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The kinetics of drop penetration were studied by filming single drops of several different fluids (water, PEG200, PEG600, and HPC solutions) as they penetrated into loosely packed beds of glass ballotini, lactose, zinc oxide, and titanium dioxide powders. Measured times ranged from 0.45 to 126 s and depended on the powder particle size,viscosity, surface tensions, and contact angle. The experimental drop penetration times were compared to existing theoretical predictions by M. Denesuk et al. (J. Colloid Interface Sci. 158, 114, 1993) and S. Middleman (Modeling Axisymmetric Flows: Dynamics of Films, Jets, and Drops, Academic Press, San Diego, 1995) but did not agree. Loosely packed powder beds tend to have a heterogeneous bed structure containing large macrovoids which do not participate in liquid flow but are included implicitly in the existing approach to estimating powder pore size. A new two-phase model was proposed where the total volume of the macrovoids was assumed to be the difference between the bed porosity and the tap porosity. A new parameter, the effective porosity (epsilon)eff, was defined as the tap porosity multiplied by the fraction of pores that terminate at a macrovoid and are effectively blocked pores. The improved drop penetration model was much more successful at estimating the drop penetration time on all powders and the predicted times were generally within an order of magnitude of the experimental results. (C) 2002 Elsevier Science (USA).
Resumo:
The 'Late Heavy Bombardment' was a phase in the impact history of the Moon that occurred 3.8-4.0 Gyr ago, when the lunar basins with known dates were formed(1,2). But no record of this event has yet been reported from the few surviving rocks of this age on the Earth. Here we report tungsten isotope anomalies, based on the Hf-182-W-182 system (half-life of 9 Myr), in metamorphosed sedimentary rocks from the 3.7-3.8-Gyr-old Isua greenstone belt of West Greenland and closely related rocks from northern Labrador, Canada. As it is difficult to conceive of a mechanism by which tungsten isotope heterogeneities could have been preserved in the Earth's dynamic crust-mantle environment from a time when short-lived Hf-182 was still present, we conclude that the metamorphosed sediments contain a component derived from meteorites.
Resumo:
Petrogenetic models for the origin of lamproites are evaluated using new major element, trace element, and Sr, Nd, and Pb isotope data for Holocene lamproites from the Gaussberg volcano in the East Antarctic Shield. Gaussberg lamproites exhibit very unusual Pb isotope compositions (Pb-206/Pb-204 = 17.44-17.55 and Pb-207/Pb-204 = 15.56-15.63), which in common Pb isotope space plot above mantle evolution lines and to the left of the meteorite isochron. Combined with very unradiogenic Nd, such compositions are shown to be inconsistent with an origin by melting of sub-continental lithospheric mantle. Instead, a model is proposed in which late Archaean continent-derived sediment is subducted as K-hollandite and other ultra-high-pressure phases and sequestered in the Transition Zone (or lower mantle) where it is effectively isolated for 2-3 Gyr. The high Pb-207/Pb-204 ratio is thus inherited from ancient continent-derived sediment, and the relatively low Pb-206/Pb-204 ratio is the result of a single stage of U/Pb fractionation by subduction-related U loss during slab dehydration. Sr and Nd isotope ratios, and trace element characteristics (e.g. Nb/Ta ratios) are consistent with sediment subduction and dehydration-related fractionation. Similar models that use variable time of isolation of subducted sediment can be derived for all lamproites. Our interpretation of lamproite sources has important implications for ocean island basalt petrogenesis as well as the preservation of geochemically anomalous reservoirs in the mantle.
Resumo:
We use published and new trace element data to identify element ratios which discriminate between arc magmas from the supra-subduction zone mantle wedge and those formed by direct melting of subducted crust (i.e. adakites). The clearest distinction is obtained with those element ratios which are strongly fractionated during refertilisation of the depleted mantle wedge, ultimately reflecting slab dehydration. Hence, adakites have significantly lower Pb/Nd and B/Be but higher Nb/Ta than typical arc magmas and continental crust as a whole. Although Li and Be are also overenriched in continental crust, behaviour of Li/Yb and Be/Nd is more complex and these ratios do not provide unique signatures of slab melting. Archaean tonalite-trondhjemite-granodiorites (TTGs) strongly resemble ordinary mantle wedge-derived arc magmas in terms of fluid-mobile trace element content, implying that they-did not form by slab melting but that they originated from mantle which was hydrated and enriched in elements lost from slabs during prograde dehydration. We suggest that Archaean TTGs formed by extensive fractional crystallisation from a mafic precursor. It is widely claimed that the time between the creation and subduction of oceanic lithosphere was significantly shorter in the Archaean (i.e. 20 Ma) than it is today. This difference was seen as an attractive explanation for the presumed preponderance of adakitic magmas during the first half of Earth's history. However, when we consider the effects of a higher potential mantle temperature on the thickness of oceanic crust, it follows that the mean age of oceanic lithosphere has remained virtually constant. Formation of adakites has therefore always depended on local plate geometry and not on potential mantle temperature.