922 resultados para MITOCHONDRIA
Resumo:
In der vorliegenden Arbeit wurde gezeigt, wie man das Potential nanopartikulärer Systeme, die vorwiegend via Miniemulsion hergestellt wurden, im Hinblick auf „Drug Delivery“ ausnutzen könnte, indem ein Wirkstoffmodell auf unterschiedliche Art und Weise intrazellulär freigesetzt wurde. Dies wurde hauptsächlich mittels konfokaler Laser-Raster-Mikrokopie (CLSM) in Kombination mit dem Bildbearbeitungsprogramm Volocity® analysiert.rnPBCA-Nanokapseln eigneten sich besonders, um hydrophile Substanzen wie etwa Oligonukleotide zu verkapseln und sie so auf ihrem Transportweg in die Zellen vor einem etwaigen Abbau zu schützen. Es konnte eine Freisetzung der Oligonukleotide in den Zellen aufgrund der elektrostatischen Anziehung des mitochondrialen Membranpotentials nachgewiesen werden. Dabei war die Kombination aus Oligonukleotid und angebundenem Cyanin-Farbstoff (Cy5) an der 5‘-Position der Oligonukleotid-Sequenz ausschlaggebend. Durch quantitative Analysen mittels Volocity® konnte die vollständige Kolokalisation der freigesetzten Oligonukleotide an Mitochondrien bewiesen werden, was anhand der Kolokalisationskoeffizienten „Manders‘ Coefficients“ M1 und M2 diskutiert wurde. Es konnte ebenfalls aufgrund von FRET-Studien doppelt markierter Oligos gezeigt werden, dass die Oligonukleotide weder beim Transport noch bei der Freisetzung abgebaut wurden. Außerdem wurde aufgeklärt, dass nur der Inhalt der Nanokapseln, d. h. die Oligonukleotide, an Mitochondrien akkumulierte, das Kapselmaterial selbst jedoch in anderen intrazellulären Bereichen aufzufinden war. Eine Kombination aus Cyanin-Farbstoffen wie Cy5 mit einer Nukleotidsequenz oder einem Wirkstoff könnte also die Basis für einen gezielten Wirkstofftransport zu Mitochondrien liefern bzw. die Grundlage schaffen, eine Freisetzung aus Kapseln ins Zytoplasma zu gewährleisten.rnDer vielseitige Einsatz der Miniemulsion gestattete es, nicht nur Kapseln sondern auch Nanopartikel herzustellen, in welchen hydrophobe Substanzen im Partikelkern eingeschlossen werden konnten. Diese auf hydrophobe Wechselwirkungen beruhende „Verkapselung“ eines Wirkstoffmodells, in diesem Fall PMI, wurde bei PDLLA- bzw. PS-Nanopartikeln ausgenutzt, welche durch ein HPMA-basiertes Block-Copolymer stabilisiert wurden. Dabei konnte gezeigt werden, dass das hydrophobe Wirkstoffmodell PMI innerhalb kürzester Zeit in die Zellen freigesetzt wurde und sich in sogenannte „Lipid Droplets“ einlagerte, ohne dass die Nanopartikel selbst aufgenommen werden mussten. Daneben war ein intrazelluläres Ablösen des stabilisierenden Block-Copolymers zu verzeichnen, welches rn8 h nach Partikelaufnahme erfolgte und ebenfalls durch Analysen mittels Volocity® untermauert wurde. Dies hatte jedoch keinen Einfluss auf die eigentliche Partikelaufnahme oder die Freisetzung des Wirkstoffmodells. Ein großer Vorteil in der Verwendung des HPMA-basierten Block-Copolymers liegt darin begründet, dass auf zeitaufwendige Waschschritte wie etwa Dialyse nach der Partikelherstellung verzichtet werden konnte, da P(HPMA) ein biokompatibles Polymer ist. Auf der anderen Seite hat man aufgrund der Syntheseroute dieses Block-Copolymers vielfältige Möglichkeiten, Funktionalitäten wie etwa Fluoreszenzmarker einzubringen. Eine kovalente Anbindung eines Wirkstoffs ist ebenfalls denkbar, welcher intrazellulär z. B. aufgrund von enzymatischen Abbauprozessen langsam freigesetzt werden könnte. Somit bietet sich die Möglichkeit mit Nanopartikeln, die durch HPMA-basierte Block-Copolymere stabilisiert wurden, gleichzeitig zwei unterschiedliche Wirkstoffe in die Zellen zu bringen, wobei der eine schnell und der zweite über einen längeren Zeitraum hinweg (kontrolliert) freigesetzt werden könnte.rnNeben Nanokapseln sowie –partikeln, die durch inverse bzw. direkte Miniemulsion dargestellt wurden, sind auch Nanohydrogelpartikel untersucht worden, die sich aufgrund von Selbstorganisation eines amphiphilen Bock-Copolymers bildeten. Diese Nanohydrogelpartikel dienten der Komplexierung von siRNA und wurden hinsichtlich ihrer Anreicherung in Lysosomen untersucht. Aufgrund der Knockdown-Studien von Lutz Nuhn konnte ein Unterschied in der Knockdown-Effizienz festgestellt werden, je nach dem, ob 100 nm oder 40 nm große Nanohydrogelpartikel verwendet wurden. Es sollte festgestellt werden, ob eine größenbedingte, unterschiedlich schnelle Anreicherung dieser beiden Partikel in Lysosomen erfolgte, was die unterschiedliche Knockdown-Effizienz erklären könnte. CLSM-Studien und quantitative Kolokalisationsstudien gaben einen ersten Hinweis auf diese Größenabhängigkeit. rnBei allen verwendeten nanopartikulären Systemen konnte eine Freisetzung ihres Inhalts gezeigt werden. Somit bieten sie ein großes Potential als Wirkstoffträger für biomedizinische Anwendungen.rn
Resumo:
Therapeutic RNAs, especially siRNAs, are a promising approach for treating diseases like cancer, neurodegenerative disorders and viral infections. Their application, however, is limited due to a lack of safe and efficient delivery systems. Nanosized carriers with the ability to either complex or entrap RNA species are a promising option. rn rn rnSuch a carrier has to meet a lot of requirements, some of which are even partly contradictive. Understanding and controlling the interplay between the different demands would advance a strategic design at an early stage of therapeutic development. rn rn This work is centered around a systematic evaluation of polyplexes, such carriers that are able to complex siRNA due to electrostatic interactions. Six structurally and chemically diverse candidates, poly-L-lysine brushes, block copolymers, cationic peptides, cationic lipids, nanohydrogels, and manganese oxide particles, were tested in a simultaneous fashion. The assays, mostly based on fluorescently labeled siRNA, ranged from the evaluation of polyplex formation and stability to in vitro parameters like cellular uptake and knockdown capability. The analysis from several perspectives offered insight into the interplay between the specifications of one polyplex. Assessing the different carriers under exactly the same experimental conditions also allowed conclusions about favourable traits and starting points for further optimization. This comparative approach also revealed weaknesses of some of the conventional protocols, which were therefore contrasted with alternative methods. In addition, in vitro knockdown assays were optimized and the impact of fluorescently labeled siRNA on knockdown efficiency was assessed. rn rn rn A second class of carriers, which share the ability to entrap siRNA inside their matrix, are briefly addressed. Nanocapsules, dextran particles and liposomes were assessed for basic features like siRNA encapsulation and knockdown capability. rn rn rn rn In an approach towards targeted delivery of RNA, liposomes were endowed with mitochondriotropic tags. Despite successful functionalization, no colocalization between the liposomal cargo and mitochondria was so far observed, which makes further optimization necessary.
Resumo:
Gewebe, Zellen und speziell Zellkompartimente unterscheiden sich in ihrer Sauerstoffkonzentration, Stoffwechselrate und in der Konzentration an gebildeten reaktiven Sauerstoffspezies. Um eine mögliche Änderung in der Aminosäurennutzung durch den Einfluss von Sauerstoff und seinen reaktiven Spezies untersuchen zu können wurden, Bereiche bzw. Kompartimente der menschlichen Zelle definiert, die einen Referenzrahmen bildeten und bekannt dafür sind, einen relativ hohen Grad an reaktiven Sauerstoffspezies aufzuweisen. Aus dem Vergleich wurde deutlich, dass vor allem die beiden redox-aktiven und schwefeltragenden Aminosäuren Cystein und Methionin durch eine besondere Verteilung und Nutzung charakterisiert sind. Cystein ist hierbei diejenige Aminosäure mit den deutlichsten Änderungen in den fünf untersuchten Modellen der oxidativen Belastung. In all diesen Modellen war die Nutzung von Cystein deutlich reduziert, wohingegen Methionin in Proteinen des Mitochondriums und der Elektronentransportkette angereichert war. Dieser auf den ersten Blick paradoxe Unterschied zwischen Cystein und Methionin wurde näher untersucht, indem die differenzierte Methioninnutzung in verschiedenen Zellkompartimenten von Homo sapiens charakterisiert wurde.rnDie sehr leicht zu oxidierende Aminosäure Methionin zeigt ein ungewöhnliches Verteilungsmuster in ihrer Nutzungshäufigkeit. Entgegen mancher Erwartung wird Methionin in zellulären Bereichen hoher oxidativer Belastung und starker Radikalproduktion intensiv verwendet. Dieses Verteilungsmuster findet man sowohl im intrazellulären Vergleich, als auch im Vergleich verschiedener Spezies untereinander, was daraufhin deutet, dass es einen lokalen Bedarf an redox-aktiven Aminosäuren gibt, der einen sehr starken Effekt auf die Nutzungshäufigkeit von Methionin ausübt. Eine hohe Stoffwechselrate, die im Allgemeinen mit einer erhöhten Produktion von Oxidantien assoziiert wird, scheint ein maßgeblicher Faktor der Akkumulation von Methionin in Proteinen der Atmungskette zu sein. Die Notwendigkeit, oxidiertes Antioxidans wieder zu reduzieren, findet auch bei Methionin Anwendung, denn zu Methioninsulfoxid oxidiertes Methionin wird durch die Methioninsulfoxidreduktase wieder zu Methionin reduziert. Daher kann die spezifische Akkumulation von Methionin in Proteinen, die verstärkt reaktiven Sauerstoffspezies ausgesetzt sind, als eine systematische Strategie angesehen werden, um andere labile Strukturen vor ungewollter Oxidation zu schützen. rnDa Cystein in allen untersuchten Modellen der oxidativen Belastung und im Besonderen in Membranproteinen der inneren Mitochondrienmembran lebensspannenabhängig depletiert war, wurde dieses Merkmal näher untersucht. Deshalb wurde die Hypothese getestet, ob ein besonderer Redox-Mechanismus der Thiolfunktion für diese selektive Depletion einer im Allgemeinen als harmlos oder antioxidativ geltenden Aminosäure verantwortlich ist. Um den Effekt von Cysteinresten in Membranen nachzustellen, wurden primäre humane Lungenfibroblasten (IMR90) mit diversen Modellsubstanzen behandelt. Geringe Konzentrationen der lipophilen Substanz Dodecanthiol verursachten eine signifikante Toxizität in IMR90-Zellen, die von einer schnellen Zunahme an polyubiquitinierten Proteinen und anderen Indikatoren des proteotoxischen Stresses, wie Sequestosom 1 (P62), HSP70 und HSP90 begleitet wurde. Dieser Effekt konnte spezifisch der Chemie der Thiolfunktion in Membranen zugeordnet werden, da Dodecanol (DOH), Dodecylmethylsulfid (DMS), Butanthiol oder wasserlösliche Thiole weder eine cytotoxische Wirkung noch eine Polyubiquitinierung von Proteinen verursachten. Die Ergebnisse stimmen mit der Hypothese überein, dass Thiole innerhalb von biologischen Membranen als radikalische Kettentransferagentien wirken. Diese Eigenschaft wird in der Polymerchemie durch Nutzung von lipophilen Thiolen in hydrophoben Milieus technisch für die Produktion von Polymeren benutzt. Da die Thiylradikal-spezifische Reaktion von cis-Fettsäuren zu trans-Fettsäuren in 12SH behandelten Zellen verstärkt ablief, kann gefolgert werden, dass 12SH zellulär radikalisiert wurde. In lebenden Organismen kann demnach die Oxidation von Cystein die Schädigung von Membranen beschleunigen und damit Einfallstore für die laterale Radikalisierung von integralen Membranproteinen schaffen, welche möglicherweise der Langlebigkeit abträglich ist, zumindest, wenn sie in der inneren Mitochondrienmembran auftritt.
Resumo:
Metallische Nanopartikel und ihre Oxide (z.B. ZnO NP, TiO2 NP und Fe2O3 NP) werden aufgrund ihrer chemischen und physikalischen Eigenschaften häufig als Additive in der Reifenproduktion, in Katalysatoren, Lebensmitteln, Arzneimitteln und Kosmetikprodukten verwendet. Künftig wird ein kontinuierlicher Anstieg der industriellen Anwendung (~ 1663 Tonnen im Jahr 2025) mit gesteigerter Freisetzung in die Umwelt erwartet, was zwangsläufig zu einer vermehrten Aufnahme über das respiratorische Epithel führt. Metalldampffieber ist als gesundheitsschädigender Effekt von Metalloxid-haltigen Aerosolen (z.B. ZnO) nach Inhalation bekannt. Immunreaktionen, wie beispielsweise Entzündungen, werden häufig mit der Entstehung von Sauerstoffradikalen (ROS) in Verbindung gebracht, die wiederum zu DNA-Schäden führen können. Drei mögliche Ursachen der Genotoxität werden angenommen: direkte Interaktion von Nanopartikeln mit intrazellulären Strukturen, Interaktion von Ionen dissoziierter Partikel mit intrazellulären Strukturen sowie die Entstehung von ROS initiiert durch Partikel oder Ionen.rnDie vorliegende Studie befasst sich mit den Mechanismen der Genotoxizität von ZnO Nanopartikeln (ZnO NP), als Beispiel für metallische Nanopartikel, im respiratorischen Epithel. In der Studie wurde gezielt die intrazelluläre Aufnahme und Verteilung von ZnO NP, deren Toxizität, deren DNA schädigendes Potential sowie die Aktivierung der DNA damage response (DDR) analysiert.rnEs konnten kaum internalisierte ZnO NP mittels TEM detektiert werden. Innerhalb der ersten Sekunden nach Behandlung mit ZnO NP wurde spektrofluorometrisch ein starker Anstieg der intrazellulären Zn2+ Konzentration gemessen. In unbehandelten Zellen war Zn2+ in granulären Strukturen lokalisiert. Die Behandlung mit ZnO NP führte zu einer Akkumulation von Zn2+ in diesen Strukturen. Im zeitlichen Verlauf verlagerten sich die Zn2+-Ionen in das Zytoplasma, sowie in Zellkerne und Mitochondrien. Es wurde keine Kolokalisation von Zn2+ mit den frühen Endosomen und dem endoplasmatischen Retikulum beobachtet. Die Vorbehandlung der Zellen mit Diethylen-triaminpentaessigsäure (DTPA), als extrazellulärem Komplexbildner, verhinderte den intrazellulären Anstieg von Zn2+ nach Behandlung mit den Partikeln.rnDie Behandlung mit ZnO NP resultierte in einer zeit- und dosisabhängigen Reduktion der zellulären Viabilität, während die intrazelluläre ROS-Konzentrationen in den ersten 30 min leicht und anschließend kontinuierlich bis zum Ende der Messung anstiegen. Außerdem verringerte sich das mitochondriale Membranpotential, während sich die Anzahl der frühapoptotischen Zellen in einer zeitabhängigen Weise erhöhte. rnDNA Doppelstrangbrüche (DNA DSB) wurden mittels Immunfluoreszenz-Färbung der γH2A.X foci sichtbar gemacht und konnten nach Behandlung mit ZnO NP detektiert werden. Die Vorbehandlung mit dem Radikalfänger N-Acetyl-L-Cytein (NAC) resultierte in stark reduzierten intrazellulären ROS-Konzentrationen sowie wenigen DNA DSB. Die DNA Schädigung wurde durch Vorbehandlung mit DTPA ganz verhindert.rnDie Aktivierung der DDR wurde durch die Analyse von ATM, ATR, Chk1, Chk2, p53 und p21 mittels Western Blot und ELISA nach Behandlung mit ZnO NP überprüft. Der ATR/Chk1 Signalweg wurde durch ZnO NP nicht aktiviert. Die Komplexierung von Zn2+ resultierte in einer verminderten ATM/Chk2 Signalwegaktivierung. Es zeigte sich, dass das Abfangen von ROS keinen Effekt auf die ATM/Chk2 Signalwegaktivierung hatte.rnZusammengefasst wurde festgestellt, dass die Exposition mit ZnO NP in der Entstehung von ROS, reduzierter Viabilität und vermindertem mitochondrialem Membranpotential resultiert, sowie zeitabhängig eine frühe Apoptose initiiert. ZnO NP dissoziierten extrazellulär und wurden schnell als Zn2+ über unbekannte Mechanismen internalisiert. Die Zn2+-Ionen wurden im Zytoplasma, sowie besonders in den Mitochondrien und dem Zellkern, akkumuliert. Die DDR Signalgebung wurde durch ZnO NP aktiviert, jedoch nicht durch NAC inhibiert. Es wurde gezeigt, dass DTPA die DDR Aktivierung komplett inhibierte. Die Behandlung mit ZnO NP induzierte DNA DSB. Die Inhibition von ROS reduzierte die DNA DSB und die Komplexierung der Zn2+ verhinderte die Entstehung von DNA DSB.rnDiese Daten sprechen für die Dissoziation der Partikel und die hierbei freigesetzten Zn2+ als Hauptmediator der Genotoxizität metallischer Nanopartikel. rn
Resumo:
The metabolic disorders that predispose patients to NASH (non-alcoholic steatohepatitis) include insulin resistance and obesity. Repeated hypoxic events, such as occur in obstructive sleep apnoea syndrome, have been designated as a risk factor in the progression of liver disease in such patients, but the mechanism is unclear, in particular the role of hypoxia. Therefore we studied the influence of hypoxia on the development and progression of steatohepatitis in an experimental mouse model. Mice with a hepatocellular-specific deficiency in the Pten (phosphatase and tensin homologue deleted on chromosome 10) gene, a tumour suppressor, were exposed to a 10% O2 (hypoxic) or 21% O2 (control) atmosphere for 7 days. Haematocrit, AST (aspartate aminotransferase), glucose, triacylglycerols (triglycerides) and insulin tolerance were measured in blood. Histological lesions were quantified. Expression of genes involved in lipogenesis and mitochondrial beta-oxidation, as well as FOXO1 (forkhead box O1), hepcidin and CYP2E1 (cytochrome P450 2E1), were analysed by quantitative PCR. In the animals exposed to hypoxia, the haematocrit increased (60+/-3% compared with 50+/-2% in controls; P<0.01) and the ratio of liver weight/body weight increased (5.4+/-0.2% compared with 4.7+/-0.3% in the controls; P<0.01). Furthermore, in animals exposed to hypoxia, steatosis was more pronounced (P<0.01), and the NAS [NAFLD (non-alcoholic fatty liver disease) activity score] (8.3+/-2.4 compared with 2.3+/-10.7 in controls; P<0.01), serum AST, triacylglycerols and glucose were higher. Insulin sensitivity decreased in mice exposed to hypoxia relative to controls. The expression of the lipogenic genes SREBP-1c (sterol-regulatory-element-binding protein-1c), PPAR-gamma (peroxisome-proliferator-activated receptor-gamma), ACC1 (acetyl-CoA carboxylase 1) and ACC2 (acetyl-CoA carboxylase 2) increased significantly in mice exposed to hypoxia, whereas mitochondria beta-oxidation genes [PPAR-alpha (peroxisome-proliferator-activated receptor-alpha) and CPT-1 (carnitine palmitoyltransferase-1)] decreased significantly. In conclusion, the findings of the present study demonstrate that hypoxia alone aggravates and accelerates the progression of NASH by up-regulating the expression of lipogenic genes, by down-regulating genes involved in lipid metabolism and by decreasing insulin sensitivity.
Resumo:
Oncocytomas are defined as tumors containing in excess of 50% large mitochondrion-rich cells, irrespective of histogenesis and dignity. Along the central neuraxis, oncocytomas are distinctly uncommon but relevant to the differential diagnosis of neoplasia marked by prominent cytoplasmic granularity. We describe an anaplastic ependymoma (WHO grade III) with a prevailing oncocytic component that was surgically resected from the right fronto-insular region of a 43-year-old female. Preoperative imaging showed a fairly circumscribed, partly cystic, contrast-enhancing mass of 2 cm × 2 cm × 1.7 cm. Histology revealed a biphasic neoplasm wherein conventional ependymal features coexisted with plump epithelioid cells replete with brightly eosinophilic granules. Whereas both components displayed an overtly ependymal immunophenotype, including positivity for S100 protein and GFAP, as well as "dot-like" staining for EMA, the oncocytic population also tended to intensely react with the antimitochondrial antibody 113-1. Conversely, failure to bind CD68 indicated absence of significant lysosomal storage. Negative reactions for both pan-cytokeratin (MNF 116) and low molecular weight cytokeratin (CAM 5.2), as well as synaptophysin and thyroglobulin, further assisted in ruling out metastatic carcinoma. In addition to confirming the presence of "zipper-like" intercellular junctions and microvillus-bearing cytoplasmic microlumina, electron microscopy allowed for the pervasive accumulation of mitochondria in tumor cells to be directly visualized. A previously not documented variant, oncocytic ependymoma, is felt to add a reasonably relevant novel item to the differential diagnosis of granule-bearing central nervous system neoplasia, in particular oncocytic meningioma, granular cell astrocytoma, as well as metastatic deposits by oncocytic malignancies from extracranial sites.
Resumo:
In Spinal Muscular Atrophy (SMA), the SMN1 gene is deleted or inactivated. Because of a splicing problem, the second copy gene, SMN2, generates insufficient amounts of functional SMN protein, leading to the death of spinal cord motoneurons. For a "severe" mouse SMA model (Smn -/-, hSMN2 +/+; with affected pups dying at 5-7 days), which most closely mimicks the genetic set-up in human SMA patients, we characterise SMA-related ultrastructural changes in neuromuscular junctions (NMJs) of two striated muscles with discrete functions. In the diaphragm, but not the soleus muscle of 4-days old SMA mice, mitochondria on both sides of the NMJs degenerate, and perisynaptic Schwann cells as well as endoneurial fibroblasts show striking changes in morphology. Importantly, NMJs of SMA mice in which a modified U7 snRNA corrects SMN2 splicing and delays or prevents SMA symptoms are normal. This ultrastructural study reveals novel features of NMJ alterations - in particular the involvement of perisynaptic Schwann cells - that may be relevant for human SMA pathogenesis.
Resumo:
Metabolic stress is believed to constitute an important signal for training-induced adjustments of gene expression and oxidative capacity in skeletal muscle. We hypothesized that the effects of endurance training on expression of muscle-relevant transcripts and ultrastructure would be specifically modified by a hypoxia complement during exercise due to enhanced glycolytic strain. Endurance training of untrained male subjects in conditions of hypoxia increased subsarcolemmal mitochondrial density in the recruited vastus lateralis muscle and power output in hypoxia more than training in normoxia, i.e. 169 versus 91% and 10 versus 6%, respectively, and tended to differentially elevate sarcoplasmic volume density (42 versus 20%, P = 0.07). The hypoxia-specific ultrastructural adjustments with training corresponded to differential regulation of the muscle transcriptome by single and repeated exercise between both oxygenation conditions. Fine-tuning by exercise in hypoxia comprised gene ontologies connected to energy provision by glycolysis and fat metabolism in mitochondria, remodelling of capillaries and the extracellular matrix, and cell cycle regulation, but not fibre structure. In the untrained state, the transcriptome response during the first 24 h of recovery from a single exercise bout correlated positively with changes in arterial oxygen saturation during exercise and negatively with blood lactate. This correspondence was inverted in the trained state. The observations highlight that the expression response of myocellular energy pathways to endurance work is graded with regard to metabolic stress and the training state. The exposed mechanistic relationship implies that the altitude specificity of improvements in aerobic performance with a 'living low-training high' regime has a myocellular basis.
Resumo:
This study addresses the cellular uptake and intracellular trafficking of 15-nm gold nanoparticles (NPs), either plain (i.e., stabilized with citrate) or coated with polyethylene glycol (PEG), exposed to human alveolar epithelial cells (A549) at the air-liquid interface for 1, 4, and 24 h. Quantitative analysis by stereology on transmission electron microscopy images reveals a significant, nonrandom intracellular distribution for both NP types. No particles are observed in the nucleus, mitochondria, endoplasmic reticulum, or golgi. The cytosol is not a preferred cellular compartment for both NP types, although significantly more PEG-coated than citrate-stabilized NPs are present there. The preferred particle localizations are vesicles of different sizes (<150, 150-1000, >1000 nm). This is observed for both NP types and indicates a predominant uptake by endocytosis. Subsequent inhibition of caveolin- and clathrin-mediated endocytosis by methyl-beta-cyclodextrin (MbetaCD) results in a significant reduction of intracellular NPs. The inhibition, however, is more pronounced for PEG-coated than citrate-stabilized NPs. The latter are mostly found in larger vesicles; therefore, they are potentially taken up by macropinocytosis, which is not inhibited by MbetaCD. With prolonged exposure times, both NPs are preferentially localized in larger-sized intracellular vesicles such as lysosomes, thus indicating intracellular particle trafficking. This quantitative evaluation reveals that NP surface coatings modulate endocytotic uptake pathways and cellular NP trafficking. Other nonendocytotic entry mechanisms are found to be involved as well, as indicated by localization of a minority of PEG-coated NPs in the cytosol.
Resumo:
Fas-activated serine/threonine phosphoprotein (FAST) is the founding member of the FAST kinase domain-containing protein (FASTKD) family that includes FASTKD1-5. FAST is a sensor of mitochondrial stress that modulates protein translation to promote the survival of cells exposed to adverse conditions. Mutations in FASTKD2 have been linked to a mitochondrial encephalomyopathy that is associated with reduced cytochrome c oxidase activity, an essential component of the mitochondrial electron transport chain. We have confirmed the mitochondrial localization of FASTKD2 and shown that all FASTKD family members are found in mitochondria. Although human and mouse FASTKD1-5 genes are expressed ubiquitously, some of them are most abundantly expressed in mitochondria-enriched tissues. We have found that RNA interference-mediated knockdown of FASTKD3 severely blunts basal and stress-induced mitochondrial oxygen consumption without disrupting the assembly of respiratory chain complexes. Tandem affinity purification reveals that FASTKD3 interacts with components of mitochondrial respiratory and translation machineries. Our results introduce FASTKD3 as an essential component of mitochondrial respiration that may modulate energy balance in cells exposed to adverse conditions by functionally coupling mitochondrial protein synthesis to respiration.
Resumo:
Chronic rejection (CR) remains an unsolved hurdle for long-term heart transplant survival. The effect of cold ischemia (CI) on progression of CR and the mechanisms resulting in functional deficit were investigated by studying gene expression, mitochondrial function, and enzymatic activity. Allogeneic (Lew F344) and syngeneic (Lew Lew) heart transplantations were performed with or without 10 h of CI. After evaluation of myocardial contraction, hearts were excised at 2, 10, 40, and 60 days for investigation of vasculopathy, gene expression, enzymatic activities, and mitochondrial respiration. Gene expression studies identified a gene cluster coding for subunits of the mitochondrial electron transport chain regulated in response to CI and CR. Myocardial performance, mitochondrial function, and mitochondrial marker enzyme activities declined in all allografts with time after transplantation. These declines were more rapid and severe in CI allografts (CR-CI) and correlated well with progression of vasculopathy and fibrosis. Mitochondria related gene expression and mitochondrial function are substantially compromised with the progression of CR and show that CI impacts on progression, gene profile, and mitochondrial function of CR. Monitoring mitochondrial function and enzyme activity might allow for earlier detection of CR and cardiac allograft dysfunction.
Resumo:
Use of norepinephrine to increase blood pressure in septic animals has been associated with increased efficiency of hepatic mitochondrial respiration. The aim of this study was to evaluate whether the same effect could be reproduced in isolated hepatic mitochondria after prolonged in vivo exposure to faecal peritonitis. Eighteen pigs were randomized to 27 h of faecal peritonitis and to a control condition (n = 9 each group). At the end, hepatic mitochondria were isolated and incubated for one hour with either norepinephrine or placebo, with and without pretreatment with the specific receptor antagonists prazosin and yohimbine. Mitochondrial state 3 and state 4 respiration were measured for respiratory chain complexes I and II, and state 3 for complex IV using high-resolution respirometry, and respiratory control ratios were calculated. Additionally, skeletal muscle mitochondrial respiration was evaluated after incubation with norepinephrine and dobutamine with and without the respective antagonists (atenolol, propranolol and phentolamine for dobutamine). Faecal peritonitis was characterized by decreasing blood pressure and stroke volume, and maintained systemic oxygen consumption. Neither faecal peritonitis nor any of the drugs or drug combinations had measurable effects on hepatic or skeletal muscle mitochondrial respiration. Norepinephrine did not improve the efficiency of complex I- and complex II-dependent isolated hepatic mitochondrial respiration [respiratory control ratio (RCR) complex I: 5.6 ± 5.3 (placebo) vs. 5.4 ± 4.6 (norepinephrine) in controls and 2.7 ± 2.1 (placebo) vs. 2.9 ± 1.5 (norepinephrine) in septic animals; RCR complex II: 3.5 ± 2.0 (placebo) vs. 3.5 ± 1.8 (norepinephrine) in controls; 2.3 ± 1.6 (placebo) vs. 2.2 ± 1.1 (norepinephrine) in septic animals]. Prolonged faecal peritonitis did not affect either hepatic or skeletal muscle mitochondrial respiration. Subsequent incubation of isolated mitochondria with norepinephrine and dobutamine did not significantly influence their respiration.
Resumo:
Fas (also called CD95 or APO-1), a member of a subgroup of the tumour necrosis factor receptor superfamily that contain an intracellular death domain, can initiate apoptosis signalling and has a critical role in the regulation of the immune system. Fas-induced apoptosis requires recruitment and activation of the initiator caspase, caspase-8 (in humans also caspase-10), within the death-inducing signalling complex. In so-called type 1 cells, proteolytic activation of effector caspases (-3 and -7) by caspase-8 suffices for efficient apoptosis induction. In so-called type 2 cells, however, killing requires amplification of the caspase cascade. This can be achieved through caspase-8-mediated proteolytic activation of the pro-apoptotic Bcl-2 homology domain (BH)3-only protein BH3-interacting domain death agonist (Bid), which then causes mitochondrial outer membrane permeabilisation. This in turn leads to mitochondrial release of apoptogenic proteins, such as cytochrome c and, pertinent for Fas death receptor (DR)-induced apoptosis, Smac/DIABLO (second mitochondria-derived activator of caspase/direct IAP binding protein with low Pi), an antagonist of X-linked inhibitor of apoptosis (XIAP), which imposes a brake on effector caspases. In this review, written in honour of Juerg Tschopp who contributed so much to research on cell death and immunology, we discuss the functions of Bid and XIAP in the control of Fas DR-induced apoptosis signalling, and we speculate on how this knowledge could be exploited to develop novel regimes for treatment of cancer.
Resumo:
Analyses of neutrophil death mechanisms have revealed many similarities with other cell types; however, a few important molecular features make these cells unique executors of cell death mechanisms. For instance, in order to fight invading pathogens, neutrophils possess a potent machinery to produce reactive oxygen species (ROS), the phagocyte nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. Evidence is emerging that these ROS are crucial in the execution of most neutrophil cell death mechanisms. Likewise, neutrophils exhibit many diverse granules that are packed with cytotoxic mediators. Of those, cathepsins were recently shown to activate pro-apoptotic B-cell lymphoma-2 (Bcl-2) family members and caspases, thus acting on apoptosis regulators. Moreover, neutrophils have few mitochondria, which hardly participate in ATP synthesis, as neutrophils gain energy from glycolysis. In spite of relatively low levels of cytochrome c in these cells, the mitochondrial death pathway is functional. In addition to these pecularities defining neutrophil death pathways, neutrophils are terminally differentiated cells, hence they do not divide but undergo apoptosis shortly after maturation. The initial trigger of this spontaneous apoptosis remains to be determined, but may result from low transcription and translation activities in mature neutrophils. Due to the unique biological characteristics of neutrophils, pharmacological intervention of inflammation has revealed unexpected and sometimes disappointing results when neutrophils were among the prime target cells during therapy. In this study, we review the current and emerging models of neutrophil cell death mechanisms with a focus on neutrophil peculiarities.