966 resultados para MAGNETIC EXCHANGE INTERACTIONS
Resumo:
Indonesia is a country spread across wide-ranging archipelago, located in South East Asia between two oceans, the Indian and the Pacific. Indonesia is well known as an active tectonic region because it lies on top of three major active tectonic plates: the Eurasian in the North, the Indian Ocean-Australian in the South, and the Pacific plate in the East. The southern and eastern part of the country features a range of volcanic arcs, volcanic mountains, and lowlands with 500 young volcanoes, of which 128 are active and thus representing 15% of the world’s active volcanoes. In the period 2002-2007, approximately 1782 disasters occurred, with hundreds of thousands of lives lost and billions of rupiah in losses incurred: (Floods - 1183 instances, cyclones - 272 instances, and landslides - 252 instances). Of these, the 2004 Aceh tsunami and the 2006 central Java earthquake (impacting predominantly city and suburbs of Yogyakarta) were the most significant. Even so, disaster management experts believe lessons learnt from the two major natural disasters needs to be formalised into laws and institutions before another disaster occurs, regardless of the type of natural disaster – i.e. Volcano eruption or landslide; as opposed to tsunami or earthquake. Following in the wake of disasters occurring in Yogyakarta, many of its community members responded by banding together as one, with the determination of rebuilding its villages and cities through the spirit of ‘gotong royong’. The idea of social interaction; in particular as a collective, consensual, and cooperative nation; has predominantly formed the ideological basis of Indonesia’s societal nature. Many Indonesian terms cohere to this ideology, such as: ‘koperasi” (cooperatives as the basis of economic interactions), ‘musyawarah’ (consensual nature in decision making), and ‘gotong royong’ (mutual assistance). ‘Gotong royong’ has become a key cultural operator in Indonesia, in particular In Jogjakarta. Appropriately so as ‘gotong royong’ is depicted from the traditional Javanese village, where labour is accomplished through reciprocal exchange and the villagers are motivated by a general ethos of selfishness and concern for the common good. The culture of ‘gotong royong’ promotes positive values such as social harmony and mutual reciprocation in disaster-affected areas provides the necessary spirit needed to endure the hardships and for all involved. While gotong royong emphasises the positive notions of mutual family support and deep community level activity there is a potential for contrast against government lead disaster response and recovery management activities especially in settings where sporadic governance mechanisms exist and transparency and accountability in the recovery process of public infrastructure assets have been questioned. This paper thus questions whether Gotong Royong is a double-edged sword, and explores the potential marriage of community values and governance mechanisms for future disaster management planning and practice.
Resumo:
The Guide includes research findings from the Australian Centre for Philanthropy and Non Profit Studies at the Queensland University of Technology (QUT). This research probed the experiences of fourteen Indigenous people who have had different degrees of success in seeking funding from philanthropic organisations. This research shows how grantmakers can make a significant difference in the lives of Aboriginal and Torres Strait Islander people.
Resumo:
This paper assesses the capacity to provide semipermeability of the synthetic layer of surface-active phospholipids created to replace the depleted surface amorphous layer of articular cartilage. The surfaces of articular cartilage specimens in normal, delipidized, and relipidized conditions following incubation in dipalmitoyl-phosphatidylcholine and palmitoyl-oleoyl-phosphatidylcholine components of the joint lipid mixture were characterized nanoscopically with the atomic force microscope and also imaged as deuterium oxide (D2O) diffused transiently through these surfaces in a magnetic resonance imaging enclosure. The MR images were then used to determine the apparent diffusion coefficients in a purpose-built MATLAB®-based algorithm. Our results revealed that all surfaces were permeable to D2O, but that there was a significant difference in the semipermeability of the surfaces under the different conditions, relative to the apparent diffusion coefficients. Based on the results and observations, it can be concluded that the synthetic lipid that is deposited to replace the depleted SAL of articular cartilage is capable of inducing some level of semipermeability.
Resumo:
Targeting females at high school or earlier may be a key towards engaging them in science, technology, engineering and mathematics (STEM) education. This ethnographic study, part of a three-year longitudinal research project, investigated Year 8 female students’ learning about engineering concepts associated with designing, constructing, testing, and evaluating a catapult. There was a series of lead-up lessons and four lessons for the catapult challenge (total of 18 x 45-minute lessons) over a nine-week period. Data from two girls within a focus group showed that they needed to: (1) receive clarification on engineering terms to facilitate more fluent discourse, (2) question and debate conceptual understandings without peers being judgemental, and (3) have multiple opportunities for engaging with materials towards designing, constructing and explaining key concepts learnt. There are implications for teachers facilitating STEM education, such as: clarifying STEM terms, articulating how students can interact in non-judgmental ways, and providing multiple opportunities for interacting within engineering education.
Resumo:
Flood flows in inundated urban environment constitute a natural hazard. During the 12- 13 January 2011 flood of the Brisbane River, detailed water elevation, velocity and suspended sediment data were recorded in an inundated street at the peak of the flood. The field observations highlighted a number of unusual flow interactions with the urban surroundings. These included some slow fluctuations in water elevations and velocity with distinctive periods between 50 and 100 s caused by some local topographic effect (choking), superposed with some fast turbulent fluctuations. The suspended sediment data highlighted some significant suspended sediment loads in the inundated zone.
Resumo:
Most security models for authenticated key exchange (AKE) do not explicitly model the associated certification system, which includes the certification authority (CA) and its behaviour. However, there are several well-known and realistic attacks on AKE protocols which exploit various forms of malicious key registration and which therefore lie outside the scope of these models. We provide the first systematic analysis of AKE security incorporating certification systems (ASICS). We define a family of security models that, in addition to allowing different sets of standard AKE adversary queries, also permit the adversary to register arbitrary bitstrings as keys. For this model family we prove generic results that enable the design and verification of protocols that achieve security even if some keys have been produced maliciously. Our approach is applicable to a wide range of models and protocols; as a concrete illustration of its power, we apply it to the CMQV protocol in the natural strengthening of the eCK model to the ASICS setting.
Resumo:
In situ FT-IR spectroscopy allows the methanol synthesis reaction to be investigated under actual industrial conditions of 503 K and 10 MPa. On Cu/SiO2 catalyst formate species were initially formed which were subsequently hydrogenated to methanol. During the reaction a steady state concentration of formate species persisted on the copper. Additionally, a small quantity of gaseous methane was produced. In contrast, the reaction of CO2 and H2 on ZnO/SiO2 catalyst only resulted in the formation of zinc formate species: no methanol was detected. The interaction of CO2 and H2 with Cu/ZnO/SiO2 catalyst gave formate species on both copper and zinc oxide. Methanol was again formed by the hydrogenation of copper formate species. Steady-state concentrations of copper formate existed under actual industrial reaction conditions, and copper formate is the pivotal intermediate for methanol synthesis. Collation of these results with previous data on copper-based methanol synthesis catalysts allowed the formulation of a reaction mechanism
Resumo:
FTIR spectra are reported of CO, CO2, H2 and H2O on silica-supported potassium, copper and potassium-copper catalysts. Adsorption of CO on a potassium/silica catalyst resulted in the formation of complexed CO moieties. Whereas exposure of CO2 to the same catalyst produced bands ascribed to CO2 -, bidentate carbonate and complexed CO species. Fully oxidised copper/silica surfaces gave bands due to CO on CuO and isolated Cu2+ cations on silica. Addition of potassium to this catalyst removed a peak attributed to CO adsorption on isolated Cu2+ cations and red-shifted the maximum ascribed to CO adsorbed on CuO. For a reduced copper/silica catalyst bands due to adsorbed CO on both high and low index planes were red-shifted by 10 cm-1 in the presence of potassium, although the strength of the Cu - CO bond did not appear to be increased concomitantly. An explanation in terms of an electrostatic effect between potassium and adsorbed CO is forwarded. A small maximum at ca. 1510 cm-1 for the reduced catalyst increased substantially upon exposing CO to a reoxidised promoted catalyst. Correspondingly, CO2 adsorption allowed the identification of two distinct carboxylate species, one of which was located at an interfacial site between copper and potassium oxide. Carboxylate species reacted with hydrogen at 295 K, on a reduced copper surface, to produce predominantly unidentate formate on potassium. In contrast no interaction was detected on a reoxidised copper catalyst at 295 K until a fraction of the copper surface was in a reduced state. Furthermore the interaction of polar water molecules with carboxylate species resulted in a perturbation of this structure which gave lower C----O stretching frequencies.
Resumo:
The reaction of CO2 and H2 with ZnO/SiO2 catalyst at 295 K gave predominantly hydrogencarbonate on zinc oxide and a small quantity of formate was evolved after heating at 393 K. Elevation of the reaction temperature to 503 K enhanced the rate of formation of zinc formate species. Significantly these formate species decomposed at 573 K almost entirely to CO2 and H2. Even after exposure of CO2-H2 or CO-CO2-H2 mixtures to highly defected ZnO/SiO2 catalyst, the formate species produced still decomposed to give CO2 and H2. It was concluded that carboxylate species which were formed at oxygen anion vacancies on polar Zn planes were not significantly hydrogenated to formate. Consequently it was proposed that the non-polar planes on zinc oxide contained sites which were specific for the synthesis of methanol. The interaction of CO2 and H2 with reduced Cu/ZnO/SiO2 catalyst at 393 K gave copper formate species in addition to substantial quantities of formate created at interfacial sites between copper and zinc oxide. It was deduced that interfacial formate species were produced from the hydrogenation of interfacial bidentate carbonate structures. The relevance of interfacial formate species in the methanol synthesis reaction is discussed. Experiments concerning the reaction of CO2-H2 with physical mixtures of Cu/SiO2 and ZnO/SiO2 gave results which were simply characteristic of the individual components. By careful consideration of previous data a detailed proposal regarding the role of spillover hydrogen is outlined. Admission of CO to a gaseous CO2-H2 feedstock resulted in a considerably diminished amount of formate species on copper. This was ascribed to a combination of over-reduction of the surface and site-blockage.
Resumo:
FTIR spectra are reported of CO2 and COi/Hi on a silica-supported caesium-doped copper catalyst. Adsorption of COj on a "caesium"/silica surface resulted in the formation of COj and complexed CO species. Exposure of CO2 to' a caesium-doped reduced copper catalyst produced not only these species but also two forms of adsorbed carboxylate giving bands at 1550, 1510, 1365 and 1345 cm"1. Reaction of carboxylate species with hydrogen at 388 K gave formate species on copper and caesium oxide in addition to methoxy groups associated with caesium oxide. Methoxy species were not detected on undoped copper catalyst suggesting that caesium may be a promoter for the methanol synthesis reaction. Methanol decomposition on a caesium-doped copper catalyst produced a small number of formate species on copper and caesium oxide. Methoxy groups on caesium oxide decomposed to CO and U.2, and subsequent reaction between CO and adsorbed oxygen resulted in carboxylate formation. Methoxy species located at interfacial sites appeared to exhibit unusual adsorption properties.
Resumo:
Abstract Background: Studies that compare Indigenous Australian and non-Indigenous patients who experience a cardiac event or chest pain are inconclusive about the reasons for the differences in-hospital and survival rates. The advances in diagnostic accuracy, medication and specialised workforce has contributed to a lower case fatality and lengthen survival rates however this is not evident in the Indigenous Australian population. A possible driver contributing to this disparity may be the impact of patient-clinician interface during key interactions during the health care process. Methods/Design: This study will apply an Indigenous framework to describe the interaction between Indigenous patients and clinicians during the continuum of cardiac health care, i.e. from acute admission, secondary and rehabilitative care. Adopting an Indigenous framework is more aligned with Indigenous realities, knowledge, intellects, histories and experiences. A triple layered designed focus group will be employed to discuss patient-clinician engagement. Focus groups will be arranged by geographic clusters i.e. metropolitan and a regional centre. Patient informants will be identified by Indigenous status (i.e. Indigenous and non-Indigenous) and the focus groups will be convened separately. The health care provider focus groups will be convened on an organisational basis i.e. state health providers and Aboriginal Community Controlled Health Services. Yarning will be used as a research method to facilitate discussion. Yarning is in congruence with the oral traditions that are still a reality in day-to-day Indigenous lives. Discussion: This study is nestled in a larger research program that explores the drivers to the disparity of care and health outcomes for Indigenous and non-Indigenous Australians who experience an acute cardiac admission. A focus on health status, risk factors and clinical interventions may camouflage critical issues within a patient-clinician exchange. This approach may provide a way forward to reduce the appalling health disadvantage experienced within the Indigenous Australian communities. Keywords: Patient-clinician engagement, Qualitative, Cardiovascular disease, Focus groups, Indigenous
Resumo:
Chlamydia trachomatis is a bacterial pathogen responsible for one of the most prevalent sexually transmitted infections worldwide. Its unique development cycle has limited our understanding of its pathogenic mechanisms. However, CtHtrA has recently been identified as a potential C. trachomatis virulence factor. CtHtrA is a tightly regulated quality control protein with a monomeric structural unit comprised of a chymotrypsin-like protease domain and two PDZ domains. Activation of proteolytic activity relies on the C-terminus of the substrate allosterically binding to the PDZ1 domain, which triggers subsequent conformational change and oligomerization of the protein into 24-mers enabling proteolysis. This activation is mediated by a cascade of precise structural arrangements, but the specific CtHtrA residues and structural elements required to facilitate activation are unknown. Using in vitro analysis guided by homology modeling, we show that the mutation of residues Arg362 and Arg224, predicted to disrupt the interaction between the CtHtrA PDZ1 domain and loop L3, and between loop L3 and loop LD, respectively, are critical for the activation of proteolytic activity. We also demonstrate that mutation to residues Arg299 and Lys160, predicted to disrupt PDZ1 domain interactions with protease loop LC and strand β5, are also able to influence proteolysis, implying their involvement in the CtHtrA mechanism of activation. This is the first investigation of protease loop LC and strand β5 with respect to their potential interactions with the PDZ1 domain. Given their high level of conservation in bacterial HtrA, these structural elements may be equally significant in the activation mechanism of DegP and other HtrA family members.
Resumo:
The body of work presented in this dissertation has demonstrated that the interactions between donor cells and host cells are critical for bone repair and regeneration. The donor cells secrete VEGF which activates the downstream PI3K/Akt signaling pathway, ultimately leading to host cell recruitment and robust bone regeneration. The findings from this dissertation may provide a scientific rationale for the development of novel therapeutic strategies in the treatment and management of bone defects.
Resumo:
Pesticides used in agricultural systems must be applied in economically viable and environmentally sensitive ways, and this often requires expensive field trials on spray deposition and retention by plant foliage. Computational models to describe whether a spray droplet sticks (adheres), bounces or shatters on impact, and if any rebounding parent or shatter daughter droplets are recaptured, would provide an estimate of spray retention and thereby act as a useful guide prior to any field trials. Parameter-driven interactive software has been implemented to enable the end-user to study and visualise droplet interception and impaction on a single, horizontal leaf. Living chenopodium, wheat and cotton leaves have been scanned to capture the surface topography and realistic virtual leaf surface models have been generated. Individual leaf models have then been subjected to virtual spray droplets and predictions made of droplet interception with the virtual plant leaf. Thereafter, the impaction behaviour of the droplets and the subsequent behaviour of any daughter droplets, up until re-capture, are simulated to give the predicted total spray retention by the leaf. A series of critical thresholds for the stick, bounce, and shatter elements in the impaction process have been developed for different combinations of formulation, droplet size and velocity, and leaf surface characteristics to provide this output. The results show that droplet properties, spray formulations and leaf surface characteristics all influence the predicted amount of spray retained on a horizontal leaf surface. Overall the predicted spray retention increases as formulation surface tension, static contact angle, droplet size and velocity decreases. Predicted retention on cotton is much higher than on chenopodium. The average predicted retention on a single horizontal leaf across all droplet size, velocity and formulations scenarios tested, is 18, 30 and 85% for chenopodium, wheat and cotton, respectively.
Resumo:
Collisions between distinct road users (e.g. drivers and riders, drivers and cyclists) make a substantial contribution to the road trauma burden. Although evidence suggests different road users interpret the same road situations contrarily, it is not clear how their situation awareness differs, nor is it clear which differences might lead to conflicts. This article presents the findings from an on-road study which was conducted to examine driver, cyclist and motorcyclist situation awareness in different road environments. The findings suggest that drivers, motorcyclists, and cyclists develop markedly different situational understandings even when operating in the same road environments. Examination of these differences indicate that they are likely to be compatible along arterial roads, shopping strips and at roundabouts, but that they may create conflicts between the different road users at intersections. The key role of road design in supporting compatible situation awareness and behaviour across different road users is discussed.