943 resultados para Luciana Ferreira da Costa
Community perceptions of four protected areas in the Northern portion of the Cerrado hotspot, Brazil
Resumo:
Establishing effective networks of protected areas (PAS) is one of the major goals of conservation strategies worldwide. However, the success of PAS in promoting biodiversity conservation depends on their integration to local and regional contexts, reducing and mitigating human impacts originating from buffer zones. Community perceptions affect interactions between residents and PAS, and thereby conservation effectiveness. Research at Tocantins state (northern Brazilian Cerrado), aimed to analyse local community perceptions of four PAs, discussing how different factors may influence these. Perceptions were assessed through standardized interviews applied to PA employees and 275 local inhabitants. There was modest community participation in PA establishment and management. Residents were aware of the PAS` existence, but were unfamiliar with their goals. Length of residency and occupation of inhabitants influenced their PA perceptions, shaping different people-park relations in each of the four studied PAs. Involvement of local residents in PA planning and management represents a central strategy to strengthen local support for PAS over the long term. In those areas that still have settlements inside their boundaries, community relocation should follow a careful participatory process to avoid significant changes in local perceptions and attitudes towards these PAS, crucial for conserving Brazilian biodiversity.
Resumo:
A joint transcriptomic and proteomic approach employing two-dimensional electrophoresis, liquid chromatography and mass spectrometry was carried out to identify peptides and proteins expressed by the venom gland of the snake Bothrops insularis, an endemic species of Queimada Grande Island, Brazil. Four protein families were mainly represented in processed spots, namely metalloproteinase, serine proteinase, phospholipase A(2) and lectin. Other represented families were growth factors, the developmental protein G10, a disintegrin and putative novel bradykinin-potentiating peptides. The enzymes were present in several isoforms. Most of the experimental data agreed with predicted values for isoelectric point and M(r) of proteins found in the transcriptome of the venom gland. The results also support the existence of posttranslational modifications and of proteolytic processing of precursor molecules which could lead to diverse multifunctional proteins. This study provides a preliminary reference map for proteins and peptides present in Bothrops insularis whole venom establishing the basis for comparative studies of other venom proteomes which could help the search for new drugs and the improvement of venom therapeutics. Altogether, our data point to the influence of transcriptional and post-translational events on the final venom composition and stress the need for a multivariate approach to snake venomics studies. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
Nuclear factor-kappa B (NFKB), a pivotal player in inflammatory responses, is constitutively expressed in the pineal gland. Corticosterone inhibits pineal NFKB leading to an enhancement of melatonin production, while tumor necrosis factor (TNF) leads to inhibition of Aa-nat transcription and the production of N-acetylserotonin in cultured glands. The reduction in nocturnal melatonin surge favors the mounting of the inflammatory response. Despite these data, there is no clear evidence of the ability of the pineal gland to recognize molecules that signal infection. This study investigated whether the rat pineal gland expresses receptors for lipopolysaccharide (LPS), the endotoxin from the membranes of Gram-negative bacteria, and to establish the mechanism of action of LPS. Here, we show that pineal glands possess both CD14 and toll-like receptor 4 (TLR4), membrane proteins that bind LPS and trigger the NFKB pathway. LPS induced the nuclear translocation of p50/p50 and p50/RELA dimers and the synthesis of TNF. The maximal expression of TNF in cultured glands coincides with an increase in the expression of TNF receptor 1 (TNFR1) in isolated pinealocytes. In addition, LPS inhibited the synthesis of N-acetylserotonin and melatonin. Therefore, the pineal gland transduces Gram-negative endotoxin stimulation by producing TNF and inhibiting melatonin synthesis. Here, we provide evidence to reinforce the idea of an immune-pineal axis, showing that the pineal gland is a constitutive player in the innate immune response.
Resumo:
In the microvillar microdomain of the kidney brush border, sodium hydrogen exchanger type 3 (NHE3) exists in physical complexes with the serine protease dipeptidyl peptidase IV (DPPIV). The purpose of this study was to explore the functional relationship between NHE3 and DPPIV in the intact proximal tubule in vivo. To this end, male Wistar rats were treated with an injection of the reversible DPPIV inhibitor Lys [Z(NO(2))]-pyrrolidide (I40; 60 mg center dot kg(-1)center dot day(-1) ip) for 7 days. Rats injected with equal amounts of the noninhibitory compound Lys[ Z(NO(2))]-OH served as controls. Na(+) -H(+) exchange activity in isolated microvillar membrane vesicles was 45 +/- 5% decreased in rats treated with I40. Membrane fractionation studies using isopycnic centrifugation revealed that I40 provoked redistribution of NHE3 along with a small fraction of DPPIV from the apical enriched microvillar membranes to the intermicrovillar microdomain of the brush border. I40 significantly increased urine output ( 67 +/- 9%; P < 0.01), fractional sodium excretion ( 63 +/- 7%; P < 0.01), as well as lithium clearance ( 81 +/- 9%; P < 0.01), an index of end-proximal tubule delivery. Although not significant, a tendency toward decreased blood pressure and plasma pH/HCO(3)(-) was noted in I40-treated rats. These findings indicate that inhibition of DPPIV catalytic activity is associated with inhibition of NHE3-mediated NaHCO(3) reabsorption in rat renal proximal tubule. Inhibition of apical Na(+) -H(+) exchange is due to reduced abundance of NHE3 protein in the microvillar microdomain of the kidney brush border. Moreover, this study demonstrates a physiologically significant interaction between NHE3 and DPPIV in the intact proximal tubule in vivo.
Resumo:
Background/Aims: The purpose of this study was to examine the cardiovascular effects of long-term ouabain treatment at different time points. Methods: Systolic blood pressure (SBP) was measured by tail-cuff method in male Wistar rats treated with ouabain (approx. 8.0 mu g.day(-1)) or vehicle for 5, 10 and 20 weeks. Afterwards, vascular function was assessed in mesenteric resistance arteries (MRA) using a wire myograph. ROS production and COX-1 and COX-2, TNF-alpha, and IL-6 protein expression were investigated. Results: SBP was increased by ouabain treatment up to the 6th week and remained stable until the 20th week. However, noradrenaline-induced contraction increased only in MRA in rats treated with ouabain for 20 weeks. NOS inhibition and endothelium removal increased the noradrenaline response, but to a smaller magnitude in MRA in the ouabain group. Moreover, inhibition of COX-2 or incubation with superoxide dismutase restores noradrenaline-induced contraction in the 20-week ouabain group to control levels. ROS production as well as COX-2, IL-6 and TNF-alpha protein expression increased in MRA in this group. Conclusion: Although ouabain treatment induced hypertension in all groups, a larger noradrenaline induced contraction was observed over 20 weeks of treatment. This vascular dysfunction was related to COX-2-derived prostanoids and oxidative stress, increased pro-inflammatory cytokines and reduced NO bioavailability. Copyright (C) 2011 S. Karger AG, Basel
Resumo:
Symptoms evoked by Thalassophryne nattereri fish envenomation include local oedema, severe pain and intense necrosis with strikingly inefficient healing, continuing for several weeks or months. Investigations carried out in our laboratory showed that, in the venom-induced acute inflammation, thrombosis in venules and constrictions in arterioles were highly visible, in contrast to a notable lack of inflammatory cell. Nevertheless, the reason that the venom toxins favour delayed local inflammatory response is poorly defined. In this study, we analysed the movement of leucocytes after T. nattereri venom injection in the intraplantar region of Swiss mice, the production of pro-inflammatory mediators and the venom potential to elicit matrix metalloproteinase production and extracellular matrix degradation. Total absence of mononuclear and neutrophil influx was observed until 14 days, but the venom stimulates pro-inflammatory mediator secretion. Matrix metalloproteinases (MMP)-2 and MMP-9 were detected in greater quantities, accompanied by tissue degradation of collagenous fibre. An influx of mononuclear cells was noted very late and at this time the levels of IL-6, IL-1 beta and MMP-2 remained high. Additionally, the action of venom on the cytoskeletal organization was assessed in vitro. Swift F-actin disruption and subsequent loss of focal adhesion was noted. Collectively these findings show that the altered specific interaction cell-matrix during the inflammatory process creates an inadequate environment for infiltration of inflammatory cells.
Resumo:
Introduction: Nerve allografting is regarded as a treatment of choice in large neural tissue losses preventing repair by primary anastomosis. In these cases, a synthetic polyglycolic acid tube is an alternative for nerve grafting. On the other hand, several studies have emphasized the importance of neurotrophic factors on neural regeneration, including substances with potential to optimize neural regeneration, especially the GM1, an neurotrophic enhancer factor. Objective: to compare, in rats, the neural regeneration degree using histological analysis, regenerated myelinized axons count, and functional analysis with the use of neurotube and GM1. Methods: This assessment was performed by interposing allograft (group A), polyglycolic acid tube (group B) and polyglycolic acid tube associated to GM1 (group C) on 5-mm sciatic nerve defects. Results: Neuroma formation was found only on group A. Groups A and C showed similar histological patterns, except for the regenerated axons on group C, which were shown to be better organized and myelinized than in group A. Conclusion: on functional recovery, no statistically significant difference was found for the three groups, despite of qualitative and quantitative histological differences found.
Resumo:
The present study evaluated the immunogenicity of new malaria vaccine formulations based on the 19 kDa C-terminal fragment of Plasmodium vivax Merozoite Surface Protein-1 (MSP1(19)) and the Salmonella enterica serovar Typhimurium flagellin (FIiC), a Toll-like receptor 5 (TLR5) agonist. FHC was used as an adjuvant either admixed or genetically linked to the P. vivax MSP1(19) and administered to C57BL/6 mice via parenteral (s.c.) or mucosal (i.n.) routes. The recombinant fusion protein preserved MSP1(19) epitopes recognized by Sera collected from P. vivax infected humans and TLR5 agonist activity. Mice parenterally immunized with recombinant P vivax MSPI 19 in the presence of FliC, either admixed or genetically linked, elicited strong and long-lasting MSP1 (19)-specific systemic antibody responses with a prevailing IgG1 subclass response. Incorporation of another TLR agonist, CpG ODN 1826, resulted in a more balanced response, as evaluated by the IgG1/IgG2c ratio, and higher cell-mediated immune response measured by interferon-gamma secretion. Finally, we show that MSPI 19-specific antibodies recognized the native protein expressed on the surface of P. vivax parasites harvested from infected humans. The present report proposes a new class of malaria vaccine formulation based on the use of malaria antigens and the innate immunity agonist FliC. it contains intrinsic adjuvant properties and enhanced ability to induce specific humoral and cellular immune responses when administered alone or in combination with other adjuvants. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Due to the effect of catabolite repression, sugar mixtures cannot be metabolized in a rapid and efficient way implicating in lower productivity in bioprocesses using lignocellulosic hydrolysates. In gram-negative bacteria, this mechanism is mediated by the phosphotransferase system (PTS), which concomitantly internalizes and phosphorylates sugars. In this study, we isolated a UV mutant of Burkholderia sacchari, called LFM828, which transports hexoses and pentoses by a non-PTS uptake system. This mutant presented released glucose catabolite repression over the pentoses. In mixtures of glucose, xylose, and arabinose, specific growth rates and the specific sugar consumption rates were, respectively, 10 and 23% higher in LFM828, resulting in a reduced time to exhaust all sugars in the medium. However, in polyhydroxybutyrate (PHB) biosynthesis experiments it was necessary the supplementation of yeast extract to maintain higher values of growth rate and sugar consumption rate. The deficient growth in mineral medium was partially recovered by replacing the ammonium nitrogen source by glutamate. It was demonstrated that the ammonium metabolism is not defective in LFM828, differently from ammonium, glutamate can also be used as carbon and energy allowing an improvement on the carbohydrates utilization for PHB production in LFM828. In contrast, higher rates of ammonia consumption and CO(2) production in LFM828 indicate altered fluxes through the central metabolism in LFM828 and the parental. In conclusion, PTS plays an important role in cell physiology and the elimination of its components has a significant impact on catabolite repression, carbon flux distribution, and PHB biosynthesis in B. sacchari.
Resumo:
The dengue virus NS1 protein has been shown to be a protective antigen under different experimental conditions but the recombinant protein produced in bacterial expression systems is usually not soluble and loses structural and immunological features of the native viral protein In the present study, experimental conditions leading to purification and refolding of the recombinant dengue virus type 2 (DENV-2) NS1 protein expressed in Escherichia coil are described The refolded recombinant protein was recovered as heat-stable soluble dimers with preserved structural features, as demonstrated by spectroscopic methods In addition, antibodies against epitopes of the NS1 protein expressed in eukaryotic cells recognized the refolded protein expressed in E coli but not the denatured form or the same protein submitted to a different refolding condition Collectively, the results demonstrate that the recombinant NS1 protein preserved important conformation and antigenic determinants of the native virus protein and represents a valuable reagent either for the development of vaccines or for diagnostic methods. (C) 2010 Elsevier B V All rights reserved
Resumo:
In a recent study, we demonstrated the immunogenic properties of a new malaria vaccine polypeptide based on a 19 kDa C-terminal fragment of the merozoite surface protein-1 (MSP1(19)) from Plasmodium vivax and an innate immunity agonist, the Salmonella enterica serovar Typhimurium flagellin (FliC). Herein, we tested whether the same strategy, based on the MSP1(19) component of the deadly malaria parasite Plasmodium falciparum, could also generate a fusion polypeptide with enhanced immunogenicity. The His(6)FliC-MSP1(19) fusion protein was expressed from a recombinant Escherichia coil and showed preserved in vitro TLR5-binding activity. In contrast to animals injected with His(6)MSP1(19), mice subcutaneously immunised with the recombinant His6FliC-MSP1(19) developed strong MSP1(19)-specific systemic antibody responses with a prevailing IgG1 subclass. Incorporation of other adjuvants, such as CpG ODN 1826, complete and incomplete Freund`s adjuvants or Quil-A, improved the IgG responses after the second, but not the third, immunising dose. It also resulted in a more balanced IgG subclass response, as evaluated by the IgG1/IgG2c ratio, and higher cell-mediated immune response, as determined by the detection of antigen-specific interferon-gamma secretion by immune spleen cells. MSP(19)-specific antibodies recognised not only the recombinant protein, but also the native protein expressed on the surface of P. falciparum parasites. Finally, sera from rabbits immunised with the fusion protein alone inhibited the in vitro growth of three different P. falciparum strains. In summary, these results extend our previous observations and further demonstrate that fusion of the innate immunity agonist FliC to Plasmodium antigens is a promising alternative to improve their immunogenicity. (c) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Shiga-like toxin 2 (Stx2)-producing enterohemorrhagic Escherichia coli (referred to as EHEC or STEC) strains are the primary etiologic agents of hemolytic-uremic syndrome (HUS), which leads to renal failure and high mortality rates. Expression of Stx2 is the most relevant virulence-associated factor of EHEC strains, and toxin neutralization by antigen-specific serum antibodies represents the main target for both preventive and therapeutic anti-HUS approaches. In the present report, we describe two Salmonella enterica serovar Typhimurium aroA vaccine strains expressing a nontoxic plasmid-encoded derivative of Stx2 (Stx2 Delta AB) containing the complete nontoxic A2 subunit and the receptor binding B subunit. The two S. Typhimurium strains differ in the expression of flagellin, the structural subunit of the flagellar shaft, which exerts strong adjuvant effects. The vaccine strains expressed Stx2 Delta AB, either cell bound or secreted into the extracellular environment, and showed enhanced mouse gut colonization and high plasmid stability under both in vitro and in vivo conditions. Oral immunization of mice with three doses of the S. Typhimurium vaccine strains elicited serum anti-Stx2B (IgG) antibodies that neutralized the toxic effects of the native toxin under in vitro conditions (Vero cells) and conferred partial protection under in vivo conditions. No significant differences with respect to gut colonization or the induction of antigen-specific antibody responses were detected in mice vaccinated with flagellated versus nonflagellated bacterial strains. The present results indicate that expression of Stx2 Delta AB by attenuated S. Typhimurium strains is an alternative vaccine approach for HUS control, but additional improvements in the immunogenicity of Stx2 toxoids are still required.
Resumo:
Although xylose is a major constituent of lignocellulosic feedstock and the second most abundant sugar in nature, only 22% of 3,152 screened bacterial isolates showed significant growth in xylose in 24 h. Of those 684, only 24% accumulated polyhydroxyalkanoates after 72 h. A mangrove isolate, identified as Bacillus sp. MA3.3, yielded the best results in literature thus far for Gram-positive strains in experiments with glucose and xylose as the sole carbon source. When glucose or xylose were supplied, poly-3-hydroxybutyrate (PHB) contents of cell dry weight were, respectively, 62 and 64%, PHB yield 0.25 and 0.24 g g(-1) and PHB productivity (P(PHB)) 0.10 and 0.06 g l(-1) h(-1). This 40% P(PHB) difference may be related to the theoretical ATP production per 3-hydroxybutyrate (3HB) monomer calculated as 3 mol mol(-1) for xylose, less than half of the ATP/3HB produced from glucose (7 mol mol(-1)). In PHB production using sugar mixtures, all parameters were strongly reduced due to carbon catabolite repression. PHB production using Gram-positive strains is particularly interesting for medical applications because these bacteria do not produce lipopolysaccharide endotoxins which can induce immunogenic reactions. Moreover, the combination of inexpensive substrates and products of more value may lead to the economical sustainability of industrial PHB production.
Resumo:
Trypanosoma (Megatrypanum) theileri from cattle and trypanosomes of other artiodactyls form a clade of closely related species in analyses using ribosomal sequences. Analysis of polymorphic sequences of a larger number of trypanosomes from broader geographical origins is required to evaluate the Clustering of isolates as suggested by previous studies. Here, we determined the sequences of the spliced leader (SL) genes of 21 isolates from cattle and 2 from water buffalo from distant regions of Brazil. Analysis of SL gene repeats revealed that the 5S rRNA gene is inserted within the intergenic region. Phylogeographical patterns inferred using SL sequences showed at least 5 major genotypes of T. theileri distributed in 2 strongly divergent lineages. Lineage TthI comprises genotypes IA and IB from buffalo and cattle, respectively, from the Southeast and Central regions, whereas genotype IC is restricted to cattle from the Southern region. Lineage Tth II includes cattle genotypes IIA, which is restricted to the North and Northeast, and IIB, found in the Centre, West, North and Northeast. PCR-RFLP of SL genes revealed valuable markers for genotyping T. theileri. The results of this study emphasize the genetic complexity and corroborate the geographical structuring of T. theileri genotypes found in cattle.
Resumo:
Analysis of the phylogenetic relationships among trypanosomes from vertebrates and invertebrates disclosed a new lineage of trypanosomes circulating among anurans and sand flies that share the same ecotopes in Brazilian Amazonia. This assemblage of closely related trypanosomes was determined by comparing whole SSU rDNA sequences of anuran trypanosomes from the Brazilian biomes of Amazonia, the Pantanal, and the Atlantic Forest and from Europe, North America, and Africa, and from trypanosomes of sand flies from Amazonia. Phylogenetic trees based on maximum likelihood and parsimony corroborated the positioning of all new anuran trypanosomes in the aquatic clade but did not support the monophyly of anuran trypanosomes. However, all analyses always supported four major clades (An01-04) of anuran trypanosomes. Clade An04 is composed of trypanosomes from exotic anurans. Isolates in clades An01 and An02 were from Brazilian frogs and toads captured in the three biomes studied, Amazonia, the Pantanal and the Atlantic Forest. Clade An01 contains mostly isolates from Hylidae whereas clade An02 comprises mostly isolates from Bufonidae; and clade An03 contains trypanosomes from sand flies and anurans of Bufonidae, Leptodactylidae, and Leiuperidae exclusively from Amazonia. To our knowledge, this is the first study describing morphological and growth features, and molecular phylogenetic affiliation of trypanosomes from anurans and phlebotomines, incriminating these flies as invertebrate hosts and probably also as important vectors of Amazonian terrestrial anuran trypanosomes.