971 resultados para LASER SPECTROSCOPY
Resumo:
Lipid analysis is commonly performed by gas chromatography (GC) in laboratory conditions. Spectroscopic techniques, however, are non-destructive and can be implemented noninvasively in vivo. Excess fat (triglycerides) in visceral adipose tissue and liver is known predispose to metabolic abnormalities, collectively known as the metabolic syndrome. Insulin resistance is the likely cause with diets high in saturated fat known to impair insulin sensitivity. Tissue triglyceride composition has been used as marker of dietary intake but it can also be influenced by tissue specific handling of fatty acids. Recent studies have shown that adipocyte insulin sensitivity correlates positively with their saturated fat content, contradicting the common view of dietary effects. A better understanding of factors affecting tissue triglyceride composition is needed to provide further insights into tissue function in lipid metabolism. In this thesis two spectroscopic techniques were developed for in vitro and in vivo analysis of tissue triglyceride composition. In vitro studies (Study I) used infrared spectroscopy (FTIR), a fast and cost effective analytical technique well suited for multivariate analysis. Infrared spectra are characterized by peak overlap leading to poorly resolved absorbances and limited analytical performance. In vivo studies (Studies II, III and IV) used proton magnetic resonance spectroscopy (1H-MRS), an established non-invasive clinical method for measuring metabolites in vivo. 1H-MRS has been limited in its ability to analyze triglyceride composition due to poorly resolved resonances. Using an attenuated total reflection accessory, we were able to obtain pure triglyceride infrared spectra from adipose tissue biopsies. Using multivariate curve resolution (MCR), we were able to resolve the overlapping double bond absorbances of monounsaturated fat and polyunsaturated fat. MCR also resolved the isolated trans double bond and conjugated linoleic acids from an overlapping background absorbance. Using oil phantoms to study the effects of different fatty acid compositions on the echo time behaviour of triglycerides, it was concluded that the use of long echo times improved peak separation with T2 weighting having a negligible impact. It was also discovered that the echo time behaviour of the methyl resonance of omega-3 fats differed from other fats due to characteristic J-coupling. This novel insight could be used to detect omega-3 fats in human adipose tissue in vivo at very long echo times (TE = 470 and 540 ms). A comparison of 1H-MRS of adipose tissue in vivo and GC of adipose tissue biopsies in humans showed that long TE spectra resulted in improved peak fitting and better correlations with GC data. The study also showed that calculation of fatty acid fractions from 1H-MRS data is unreliable and should not be used. Omega-3 fatty acid content derived from long TE in vivo spectra (TE = 540 ms) correlated with total omega-3 fatty acid concentration measured by GC. The long TE protocol used for adipose tissue studies was subsequently extended to the analysis of liver fat composition. Respiratory triggering and long TE resulted in spectra with the olefinic and tissue water resonances resolved. Conversion of the derived unsaturation to double bond content per fatty acid showed that the results were in accordance with previously published gas chromatography data on liver fat composition. In patients with metabolic syndrome, liver fat was found to be more saturated than subcutaneous or visceral adipose tissue. The higher saturation observed in liver fat may be a result of a higher rate of de-novo-lipogenesis in liver than in adipose tissue. This thesis has introduced the first non-invasive method for determining adipose tissue omega-3 fatty acid content in humans in vivo. The methods introduced here have also shown that liver fat is more saturated than adipose tissue fat.
Resumo:
Technical or contaminated ethanol products are sometimes ingested either accidentally or on purpose. Typical misused products are black-market liquor and automotive products, e.g., windshield washer fluids. In addition to less toxic solvents, these liquids may contain the deadly methanol. Symptoms of even lethal solvent poisoning are often non-specific at the early stage. The present series of studies was carried out to develop a method for solvent intoxication breath diagnostics to speed up the diagnosis procedure conventionally based on blood tests. Especially in the case of methanol ingestion, the analysis method should be sufficiently sensitive and accurate to determine the presence of even small amounts of methanol from the mixture of ethanol and other less-toxic components. In addition to the studies on the FT-IR method, the Dräger 7110 evidential breath analyzer was examined to determine its ability to reveal a coexisting toxic solvent. An industrial Fourier transform infrared analyzer was modified for breath testing. The sample cell fittings were widened and the cell size reduced in order to get an alveolar sample directly from a single exhalation. The performance and the feasibility of the Gasmet FT-IR analyzer were tested in clinical settings and in the laboratory. Actual human breath screening studies were carried out with healthy volunteers, inebriated homeless men, emergency room patients and methanol-intoxicated patients. A number of the breath analysis results were compared to blood test results in order to approximate the blood-breath relationship. In the laboratory experiments, the analytical performance of the Gasmet FT-IR analyzer and Dräger 7110 evidential breath analyzer was evaluated by means of artificial samples resembling exhaled breath. The investigations demonstrated that a successful breath ethanol analysis by Dräger 7110 evidential breath analyzer could exclude any significant methanol intoxication. In contrast, the device did not detect very high levels of acetone, 1-propanol and 2-propanol in simulated breath. The Dräger 7110 evidential breath ethanol analyzer was not equipped to recognize the interfering component. According to the studies the Gasmet FT-IR analyzer was adequately sensitive, selective and accurate for solvent intoxication diagnostics. In addition to diagnostics, the fast breath solvent analysis proved feasible for controlling the ethanol and methanol concentration during haemodialysis treatment. Because of the simplicity of the sampling and analysis procedure, non-laboratory personnel, such as police officers or social workers, could also operate the analyzer for screening purposes.
Resumo:
The complexes, cis-(CO)-trans-(Cl)-[Ru(SRaaiNR)(CO)(2)Cl-2] (2) and trans-(Cl)-[Ru(SRaaiNR)(CO)Cl-2] (3) (SRaaiNR = 1-alkyl-2-{(o-thioalkyl)phenylazo}imidazoles; R = Me (1a) and Et (1b)) have been synthesized and characterized. The structural confirmation is achieved by single crystal X-ray structure determinations. The complexes show Ru(III)/Ru(II) couple and ligand reductions. Electronic structure and spectral properties of the complexes have been explained with the DFT and TDDFT calculation. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We report the surface laser damage threshold in sodium p-nitrophenolate dihydrate, a nonlinear optical crystal. The experiment is performed with a pulsed Nd:YAG laser in TEM00 mode. The single shot damage thresholds are 11.16 +/- 0.28GWcm(-2) and 1.25 +/- 0.02GWcm(-2) for 1064 nm and 532 nm laser wavelengths respectively. A close correlation between the laser damage threshold and mechanical hardness is observed. A possible mechanism of laser damage is discussed.
Resumo:
Reactive Pulsed Laser Deposition is a single step process wherein the ablated elemental metal reacts with a low pressure ambient gas to form a compound. We report here a Secondary Ion Mass Spectrometry based analytical methodology to conduct minimum number of experiments to arrive at optimal process parameters to obtain high quality TiN thin film. Quality of these films was confirmed by electron microscopic analysis. This methodology can be extended for optimization of other process parameters and materials. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The formation of an ω-Al7Cu2Fe phase during laser cladding of quasicrystal-forming Al65Cu23.3Fe11.7 alloy on a pure aluminium substrate is reported. This phase is found to nucleate at the periphery of primary icosahedral-phase particles. A large number of ω-phase particles form an envelope around the icosahedral phase. On the outer side, they form an interface with an agr-Al solid solution. Detailed transmission electron microscopic observations show that the ω phase exhibits an orientation relationship with the icosahedral phase. Analysis of experimental results suggests that the ω phase forms by precipitation on an icosahedral phase by heterogeneous nucleation and grows into the aluminium-rich melt until supersaturation is exhausted. The microstructural observations are explained in terms of available models of phase transformations.
Resumo:
Abrasion and slurry erosion behaviour of chromium-manganese iron samples with chromium (Cr) in the range similar to 16-19% and manganese (Mn) at 5 and 10% levels have been characterized for hardness followed by microstructural examination using optical and scanning electron microscopy. Positron lifetime studies have been conducted to understand the defects/microporosity influence on the microstructure. The samples were heat treated and characterized to understand the structural transformations in the matrix. The data reveals that hardness decreased with increase in Mn content from 5 to 10% in the first instance and then increase in the section size in the other case, irrespective of the sample conditions. The abrasion and slurry erosion losses show increase with increase in the section size as well as with increase in Mn content. The positron results show that as hardness increases from as-cast to heat treated sample, the positron trapping rate and hence defect concentration showed opposite trend as expected. So a good correlation between defects concentration and the hardness has been observed. These findings also corroborate well with the microstructural features obtained from optical and scanning electron microscopy. (C) 2009 Elsevier B. V. All rights reserved.
Resumo:
Coupled electromagnetically induced transparency (EIT) has been observed with a dual mode control laser. The technique can be used for generating EIT-comb from optical frequency comb.
Resumo:
Laser mediated stimulation of biological process was amongst its very first effects documented by Mester et al. but the ambiguous and tissue-cell context specific biological effects of laser radiation is now termed ‘Photobiomodulation’. We found many parallels between the reported biological effects of lasers and a multiface-ted growth factor, Transforming Growth Factor-β (TGF-β). This review outlines the interestingparallelsbetween the twofieldsand our rationalefor pursuingtheir potential causal correlation. We explored this correlation using an in vitro assay systems and a human clinical trial on healing wound extraction sockets that we reported in a recent publication. In conclusion we report that low power laser irradiation can activate latent TGF-β1 and β3 complexes and suggest that this might be one of the major modes of the photobiomodulatory effects of low power lasers.
Resumo:
Scanning tunneling microscopy/spectroscopy studies were carried out on single crystals of colossal magnetoresistive manganite Pr0.68Pb0.32MnO3 at different temperatures in order to probe their spatial homogeneity across the metal-insulator transition temperature TM-I(similar to 255 K). A metallic behavior of the local conductance was observed for temperatures T < TM-I. Zero bias conductance (dI/dV)v=(0), which is directly proportional to the local surface density of states at the Fermi level, shows a single distribution at temperatures T < 200 K suggesting a homogeneous electronic phase at low temperatures. In a narrow temperature window of 200 K < T < TM-I, however, an inhomogeneous distribution of (dI/dV)v=(0) has been observed. This result gives evidence for phase separation in the transition region in this compound.
Resumo:
Scanning tunneling microscopy/spectroscopy studies were carried out on single crystals of colossal magnetoresistive manganite Pr0.68Pb0.32MnO3 at different temperatures in order to probe their spatial homogeneity across the metal-insulator transition temperature TM-I(similar to 255 K). A metallic behavior of the local conductance was observed for temperatures T < TM-I. Zero bias conductance (dI/dV)v=(0), which is directly proportional to the local surface density of states at the Fermi level, shows a single distribution at temperatures T < 200 K suggesting a homogeneous electronic phase at low temperatures. In a narrow temperature window of 200 K < T < TM-I, however, an inhomogeneous distribution of (dI/dV)v=(0) has been observed. This result gives evidence for phase separation in the transition region in this compound.
Resumo:
Terahertz time-domain spectroscopy has been carried out on a metallic film of polypyrrole (PPy doped by PF6). The sample was exposed to air to investigate how the conductivity of the film varies as a function of time. The absorption and dispersion of the film decrease during initial days, and then tend to saturate. The conductivity of unaged sample follows the Drude model, and upon aging the data fit to the localization-modified Drude model. The fitting parameters show that the number of charge carriers decreases during the aging process. The initial rapid decrease in conductivity suggests that some of the delocalized carriers are localized due to aging. (C) 2007 American Institute of Physics.