1000 resultados para Isotopic Composition
Resumo:
The book is devoted to study of diagenetic changes of organic matter and mineral part of sediments and interstitial waters of the Pacific Ocean due to physical-chemical and microbiological processes. Microbiological studies deal with different groups of bacteria. Regularities of quantitative distribution and the role of microorganisms in geochemical processes are under consideration. Geochemical studies highlight redox processes of the early stages of sediment diagenesis, alterations of interstitial waters, regularities of variations in chemical composition of iron-manganese nodules.
Resumo:
During the cruises No 17 and 22 of the German research vessel "Meteor", 45 water samples were taken at 4 stations in the central part of the Mediterranean Sea. Mass spectrometrical analyses showed that systematic, but time variable changes of the oxygen isotope ratios occur. Deep water samples (T> 500 m) have a ± constant isotopic composition of d18O = +1.79? (SMOW) and a Chlorinity of 21.399?. These data are discussed with respect to paleotemperature determinations.
Resumo:
Oxygen isotope ratios were obtained from authigenic clinoptilolites from Barbados Accretionary Complex, Yamato Basin, and Exmouth Plateau sediments (ODP Sites 672, 797, and 762) in order to investigate the isotopic fractionation between clinoptilolite and pore water at early diagenetic stages and low temperatures. Dehydrated clinoptilolites display isotopic ratios for the zeolite framework (delta 18Of) that extend from +18.7? to +32.8? (vs. SMOW). In combination with associated pore water isotope data, the oxygen isotopic fractionation between clinoptilolite and pore fluids could be assessed in the temperature range from 25ºC to 40ºC. The resulting fractionation factors of 1.032 at 25ºC and 1.027 at 40ºC are in good agreement with the theoretically determined oxygen isotope fractionation between clinoptilolite and water. Calculations of isotopic temperatures illustrate that clinoptilolite formation occurred at relatively low temperatures of 17ºC to 29ºC in Barbados Ridge sediments and at 33ºC to 62ºC in the Yamato Basin. These data support a low-temperature origin of clinoptilolite and contradict the assumption that elevated temperatures are the main controlling factor for authigenic clinoptilolite formation. Increasing clinoptilolite delta18Of values with depth indicate that clinoptilolites which are now in the deeper parts of the zeolite-bearing intervals had either formed at lower temperatures (17-20ºC) or under closed system conditions.
Resumo:
We measured oxygen-isotope compositions of 16 siliceous rocks from Deep Sea Drilling Project Sites 463, 464, 465, and 466 (Leg 62). Samples are from deposits that range in age from about 40 to 103 m.y. and that occur at sub-bottom depths of 9 to 461 meters. Mean d18O values range from 28.4 to 36.8 per mil and 36.0 ± 0.3 per mil for quartz-rich and opal-CTrich rocks, respectively. d18O values in chert decrease with increasing sub-bottom depth; the slope of the d18O/depth curve is less steep for Site 464 than for the other sites which indicates that chert at Site 464 formed at higher temperatures than chert at Sites 463, 465, and 466. Temperatures of formation of cherts were 7 to 42°C, using the silica-water fractionation factor of Knauth and Epstein (1976), or 19 to 56°C, using the equation of Clayton et al. (1972). Temperatures in the sediment where the cherts now occur are lower than their isotopically determined temperatures of formation, which means that the cherts record an earlier history when temperatures in the sediment section were greater. Estimated sediment temperatures when the cherts formed are comparable to, but generally slightly lower than, those calculated from Knauth and Epstein's equation. The isotopic composition of cherts is more closely related to environment of formation (diagenetic environment) or paleogeothermal gradients, than to paleoclimates (bottom-water temperatures). Opal-CT-rich rocks may better record paleo-bottom-water temperature. In Leg 62 cherts, better crystallinity of quartz corresponds to lower d18O values; this implies progressively higher temperatures of equilibration between quartz and water during maturation of quartz. The interrelationship of d18O and crystallinity is noted also in continental-margin deposits such as the Monterey Formation - but for higher temperatures. The apparent temperature difference between open-ocean and continental-margin deposits can be explained by the dominant control of temperature on silica transformation in the rapidly deposited continental-margin deposits, whereas time, as well as temperature, has a strong influence on the transformations in open-ocean deposits. Comparisons between the chemistry and d18O values of cherts reveal two apparent trends: both boron and SiO2 increase as d18O increases. However, the correspondence between SiO2 and d18O is only apparent, because the two cherts lowest in SiO2 are also the most deeply buried, so the trend actually reflects depth of burial. The correspondence between boron and d18O supports the conclusion that boron is incorporated in the quartz crystal structure during precipitation
Resumo:
The carbon and oxygen isotopic compositions of selected bryozoan skeletons from upper Pleistocene bryozoan mounds in the Great Australian Bight (Ocean Drilling Program Leg 182; Holes 1129C, 1131A, and 1132B) were determined. Cyclostome bryozoans, Idmidronea spp. and Nevianipora sp., have low to intermediate magnesian calcite skeletons (1.5-10.0 and 0.9-6.4 molar percentage [mol%] MgCO3, respectively), but a considerable number include marine cements. The cheilostome Adeonellopsis spp. are biminerallic, principally aragonite, with some high magnesian calcite (HMC) (6.6-12.1 mol% MgCO3). The HMC fraction of Adeonellopsis has lower d13C and similar d18O values compared with the aragonite fraction. Reexamination of modern bryozoan isotopic composition shows that skeletons of Adeonellopsis spp. and Nevianipora sp. form close to oxygen isotopic equilibrium with their ambient water. Therefore, changes in glacial-interglacial oceanographic conditions are preserved in the oxygen isotopic profiles. The bryozoan oxygen isotopic profiles are correlated well with marine isotope Stages 1-8 in Holes 1129C and 1132B and to Stages 1-4(?) in Hole 1131A. The horizons of the bryozoan mounds that yield skeletons with heavier oxygen isotopic values can be correlated with isotope Stages 2, 4(?), 6, and 8 in Hole 1129C; Stages 2 and 4(?) in Hole 1131A; and Stages 2, 4, 6, and 8 in Hole 1132B. These results provide supporting evidence for a model for bryozoan mound formation, in which the mounds were formed during intensified upwelling and increased trophic resources during glacial periods.
Resumo:
Ocean Drilling Program (ODP) Leg 164 recovered a number of large solid gas hydrate from Sites 994, 996, and 997 on the Blake Ridge. Sites 994 and 997 samples, either nodular or thick massive pieces, were subjected to laboratory analysis and measurements to determine the structure, molecular and isotopic composition, thermal conductivity, and equilibrium dissociation conditions. X-ray computed tomography (CT) imagery, X-ray diffraction, nuclear magnetic resonance (NMR), and Raman spectroscopy have revealed that the gas hydrates recovered from the Blake Ridge are nearly 100% methane gas hydrate of Structure I, cubic with a lattice constant of a = 11.95 ± 0.05 angström, and a molar ratio of water to gas (hydration number) of 6.2. The d18O of water is 2.67 per mil to 3.51 per mil SMOW, which is 3.5-4.0 heavier than the ambient interstitial waters. The d13C and dD of methane are -66 per mil to -70 per mil and -201 per mil to -206 per mil, respectively, suggesting that the methane was generated through bacterial CO2 reduction. Thermal conductivity values of the Blake Ridge hydrates range from 0.3 to 0.5 W/(m K). Equilibrium dissociation experiments indicate that the three-phase equilibrium for the specimen is 3.27 MPa at 274.7 K. This is almost identical to that of synthetic pure methane hydrate in freshwater.
Resumo:
Nontronite, the main metalliferous phase of the Galapagos mounds, occurs at a subsurface depth of ~2-20 m; Mn-oxide material is limited to the upper 2 m of these mounds. The nontronite forms intervals of up to a few metres thickness, consisting essentially of 100% nontronite granules, which alternate with intervals of normal pelagic sediment. The metalliferous phases represent essentially authigenic precipitates, apparently formed in the presence of upwelling basement-derived hydrothermal solutions which dissolved pre-existent pelagic sediment. Electron microprobe analyses of nontronite granules from different core samples indicate that: (1) there is little difference in major-element composition between nontronitic material from varying locations within the mounds; and (2) adjacent granules from a given sample have very similar compositions and are internally homogeneous. This indicates that the granules are composed of a single mineral of essentially constant composition, consistent with relatively uniform conditions of solution Eh and composition during nontronite formation. The Pb-isotopic composition of the nontronite and Mn-oxide sediments indicates that they were formed from solutions which contained variable proportions of basaltic Pb, introduced into pore waters by basement-derived solutions, and of normal-seawater Pb. However, the Sr-isotopic composition of these sediments is essentially indistinguishable from the value for modern seawater. On the basis of 18O/16O ratios, formation temperatures of ~20-30°C have been estimated for the nontronites. By comparison, temperatures of up to 11.5°C at 9 m depth have been directly measured within the mounds and heat flow data suggest present basement-sediment interface temperatures of 15-25°C.
Resumo:
Although the presence of extensive gas hydrate on the Cascadia margin, offshore from the western U.S. and Canada, has been inferred from marine seismic records and pore water chemistry, solid gas hydrate has only been found at one location. At Ocean Drilling Program (ODP) Site 892, offshore from central Oregon, gas hydrate was recovered close to the sediment-water interface at 2-19 m below the seafloor (mbsf) at 670 m water depth. The gas hydrate occurs as elongated platy crystals or crystal aggregates, mostly disseminated irregularly, with higher concentrations occurring in discrete zones, thin layers, and/or veinlets parallel or oblique to the bedding. A 2- to 3-cm thick massive gas hydrate layer, parallel to bedding, was recovered at ~17 mbsf. Gas from a sample of this layer was composed of both CH4 and H2S. This sample is the first mixed-gas hydrate of CH4-H2S documented in ODP; it also contains ethane and minor amounts of CO2. Measured temperatures of the recovered core ranged from 2 to -1.8°C and are 6 to 8 degrees lower than in-situ temperatures. These temperature anomalies were caused by the partial dissociation of the CH4-H2S hydrate during recovery without a pressure core sampler. During this dissociation, toxic levels of H2S (delta34S, +27.4?) were released. The delta13C values of the CH4 in the gas hydrate, -64.5 to -67.5? (PDB), together with deltaD values of -197 to -199? (SMOW) indicate a primarily microbial source for the CH4. The delta18O value of the hydrate H2O is +2.9? (SMOW), comparable with the experimental fractionation factor for sea-ice. The unusual composition (CH4-H2S) and depth distribution (2-19 mbsf) of this gas hydrate indicate mixing between a methane-rich fluid with a pore fluid enriched in sulfide; at this site the former is advecting along an inclined fault into the active sulfate reduction zone. The facts that the CH4-H2S hydrate is primarily confined to the present day active sulfate reduction zone (2-19 mbsf), and that from here down to the BSR depth (19-68 mbsf) the gas hydrate inferred to exist is a >=99% CH4 hydrate, suggest that the mixing of CH4 and H2S is a geologically young process. Because the existence of a mixed CH4-H2S hydrate is indicative of moderate to intense advection of a methane-rich fluid into a near surface active sulfate reduction zone, tectonically active (faulted) margins with organic-rich sediments and moderate to high sedimentation rates are the most likely regions of occurrence. The extension of such a mixed hydrate below the sulfate reduction zone should reflect the time-span of methane advection into the sulfate reduction zone.
Resumo:
An improved procedure for lithium isotope analysis using Li3PO4 as the ion source has been investigated for application to geological samples. The 7Li/6Li ratio is measured using double rhenium filament thermal ionization mass spectrometry in which isotopic fractionation is minimized at high temperatures. The method produces a stable, high intensity Li+ ion beam that allows measurement of nanogram quantities of lithium. This results in a reduction in sample size of up to 1000 times relative to that required for the established Li2BO2+ method while maintaining a comparable precision of better than 1? (1 sigma). Replicate analyses of the NBS L-SVEC Li2CO3 standard yielded a mean value of 12.1047+/-0.0043 (n=21), which is close to the reported absolute value of 12.02+/-0.03. Intercalibration with a wide range of geological samples shows excellent agreement between the Li3PO4 and Li2BO2+ techniques. Replicate analyses of seawater and a fresh submarine basalt display high precision results that agree with previous measurements. Taking advantage of the high ionization efficiency of the phosphate ion source, we have made the first measurements of the lithium concentration (by isotope dilution) and isotopic composition of calcareous foraminiferal tests and other marine carbonates. Preliminary results indicate that substantial lithium exchange occurs between carbonate sediments and their interstitial waters. In addition, a possible link between lithium paleoceanography and paleoclimate during the last 1000 ky may be derived from planktonic foraminiferal tests. This highly sensitive technique can be applied in the examination of low lithium reservoirs and thereby provide insight into some fundamental aspects of lithium geochemistry.