982 resultados para Interacting particle systems


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to the socio-economic inhomogeneity of communities in developing countries, the selection of sanitation systems is a complex task. To assist planners and communities in assessing the suitability of alternatives, the decision support system SANEX™ was developed. SANEX™ evaluates alternatives in two steps. First, Conjunctive Elimination, based on 20 mainly technical criteria, is used to screen feasible alternatives. Subsequently, a model derived from Multiattribute Utility Technique (MAUT) uses technical, socio-cultural and institutional criteria to compare the remaining alternatives with regard to their implementability and sustainability. This paper presents the SANEX™ algorithm, examples of its application in practice, and results obtained from field testing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Within the information systems field, the task of conceptual modeling involves building a representation of selected phenomena in some domain. High-quality conceptual-modeling work is important because it facilitates early detection and correction of system development errors. It also plays an increasingly important role in activities like business process reengineering and documentation of best-practice data and process models in enterprise resource planning systems. Yet little research has been undertaken on many aspects of conceptual modeling. In this paper, we propose a framework to motivate research that addresses the following fundamental question: How can we model the world to better facilitate our developing, implementing, using, and maintaining more valuable information systems? The framework comprises four elements: conceptual-modeling grammars, conceptual-modeling methods, conceptual-modeling scripts, and conceptual-modeling contexts. We provide examples of the types of research that have already been undertaken on each element and illustrate research opportunities that exist.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Composite resin is a widely-used direct tooth coloured restorative material. Photoactivation of the polymerisation reaction can be achieved by visible blue light from a range of light sources, including halogen lamps, metal halide lamps, plasma arc lamps, and Light Emitting Diode (LED) lights. Concerns have been raised that curing lights may induce a temperature rise that could be detrimental to the vitality of the dental pulp during the act of photoactivation. The present study examined heat changes associated with standardised class V restorations on the buccal surface of extracted premolar teeth, using a curing time of 40 seconds. The independent effects of type of light source, resin shade and remaining tooth thickness were assessed using a matrix experimental design. When a conventional halogen lamp, a metal halide lamp and two different LED lights were compared, it was found that both LED lamps elicited minimal thermal changes at the level of the dental pulp, whereas the halogen lamp induced greater changes and the metal halide lamp caused the greatest thermal insult of all the light sources. These thermal changes were influenced by resin shade, with different patterns for LED versus halogen or halide sources. Thermal stress reduced as the remaining thickness of tooth structure between the pulp and the cavity floor increased. From these results, it is concluded that LED lights produce the least thermal insult during photopolymerisation of composite resins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper discusses the design and characterisation of a short, and hence portable impact load cell for in-situ quantification of ore breakage properties under impact loading conditions. Much literature has been published in the past two decades about impact load cells for ore breakage testing. It has been conclusively shown that such machines yield significant quantitative energy-fragmentation information about industrial ores. However, documented load cells are all laboratory systems that are not adapted for in-situ testing due to their dimensions and operating requirements. The authors report on a new portable impact load cell designed specifically for in-situ testing. The load cell is 1.5 m in height and weighs 30 kg. Its physical and operating characteristics are detailed in the paper. This includes physical dimensions, calibration and signal deconvolution. Emphasis is placed on the deconvolution issue, which is significant for such a short load cell. Finally, it is conclusively shown that the short load cell is quantitatively as accurate as its larger laboratory analogues. (C) 2062 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper deals with atomic systems coupled to a structured reservoir of quantum EM field modes, with particular relevance to atoms interacting with the field in photonic band gap materials. The case of high Q cavities has been treated elsewhere using Fano diagonalization based on a quasimode approach, showing that the cavity quasimodes are responsible for pseudomodes introduced to treat non-Markovian behaviour. The paper considers a simple model of a photonic band gap case, where the spatially dependent permittivity consists of a constant term plus a small spatially periodic term that leads to a narrow band gap in the spectrum of mode frequencies. Most treatments of photonic band gap materials are based on the true modes, obtained numerically by solving the Helmholtz equation for the actual spatially periodic permittivity. Here the field modes are first treated in terms of a simpler quasimode approach, in which the quasimodes are plane waves associated with the constant permittivity term. Couplings between the quasimodes occur owing to the small periodic term in the permittivity, with selection rules for the coupled modes being related to the reciprocal lattice vectors. This produces a field Hamiltonian in quasimode form. A matrix diagonalization method may be applied to relate true mode annihilation operators to those for quasimodes. The atomic transitions are coupled to all the quasimodes, and the true mode atom-EM field coupling constants (one-photon Rabi frequencies) are related to those for the quasimodes and also expressions are obtained for the true mode density. The results for the one-photon Rabi frequencies differ from those assumed in other work. Expressions for atomic decay rates are obtained using the Fermi Golden rule, although these are valid only well away from the band gaps.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We generalize the basic concepts of the positive-P and Wigner representations to unstable quantum-optical systems that are based on nonorthogonal quasimodes. This lays the foundation for a quantum description of such systems, such as, for example an unstable cavity laser. We compare both representations by calculating the tunneling times for an unstable resonator optical parametric oscillator.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The suitable use of array antennas in cellular systems results in improvement in the signal-to-interference ratio (StR), This property is the basis for introducing smart or adaptive antenna systems. in general, the SIR depends on the array configuration and is a function of the direction of the desired user and interferers. Here, the SIR performance for linear and circular arrays is analysed and compared.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interrelationship between myofibroblasts and fibrogenic growth factors in the pathogenesis of renal fibrosis is poorly defined. A temporal and spatial analysis of myofibroblasts, their proliferation and death, and presence of transforming growth factor-beta1 (TGF-beta1) and platelet-derived growth factor-B (PDGF-B) was carried out in an established rodent model in which chronic renal scarring and fibrosis occurs after healed renal papillary necrosis (RPN), similar to that seen with analgesic nephropathy. Treated and control groups (N = 6 and 4, respectively) were compared at 2, 4, 8 and 12 weeks. A positive relationship was found between presence of tubulo-interstitial myofibroblasts and development of fibrosis. Apoptotic myofibroblasts were identified in the interstitium and their incidence peaked 2 weeks after treatment. Levels of interstitial cell apoptosis and fibrosis were negatively correlated over time (r = -0.57, p < 0.01 ), suggesting that as apoptosis progressively failed to limit myofibroblast numbers, fibrosis increased. In comparison with the diminishing apoptosis in the interstitium, the tubular epithelium had progressively increasing levels of apoptosis over time, indicative of developing atrophy of nephrons. TGF-beta1 protein expression had a close spatial and temporal association with fibrosis and myofibroblasts, whilst PDGF-B appeared to have a closer link with populations of other chronic inflammatory cells such as infiltrating lymphocytes. Peritubular myofibroblasts were often seen near apoptotic cells in the tubular epithelium, suggestive of a paracrine toxic effect of factor/s secreted by the myofibroblasts. In vitro , TGF-beta1 was found to be toxic to renal tubular epithelial cells. These findings suggest an interaction between myofibroblasts, their deletion by apoptosis, and the presence of the fibrogenic growth factor TGF-beta1 in renal fibrosis, whereby apoptotic deletion of myofibroblasts could act as a controlling factor in progression of fibrosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper necessary and sufficient conditions are given for the metamorphosis of a lambda-fold K-3,K-3-design of order n into a lambda-fold 6-cycle system of order n, by retaining one 6-cycle subgraph from each copy of K-3,K-3, and then rearranging the set of all the remaining edges, three from each K-3,K-3, into further 6-cycles so that the result is a lambda-fold 6-cycle system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of the new TOGA (titration and off-gas analysis) sensor for the detailed study of biological processes in wastewater treatment systems is outlined. The main innovation of the sensor is the amalgamation of titrimetric and off-gas measurement techniques. The resulting measured signals are: hydrogen ion production rate (HPR), oxygen transfer rate (OTR), nitrogen transfer rate (NTR), and carbon dioxide transfer rate (CTR). While OTR and NTR are applicable to aerobic and anoxic conditions, respectively, HPR and CTR are useful signals under all of the conditions found in biological wastewater treatment systems, namely, aerobic, anoxic and anaerobic. The sensor is therefore a powerful tool for studying the key biological processes under all these conditions. A major benefit from the integration of the titrimetric and off-gas analysis methods is that the acid/base buffering systems, in particular the bicarbonate system, are properly accounted for. Experimental data resulting from the TOGA sensor in aerobic, anoxic, and anaerobic conditions demonstrates the strength of the new sensor. In the aerobic environment, carbon oxidation (using acetate as an example carbon source) and nitrification are studied. Both the carbon and ammonia removal rates measured by the sensor compare very well with those obtained from off-line chemical analysis. Further, the aerobic acetate removal process is examined at a fundamental level using the metabolic pathway and stoichiometry established in the literature, whereby the rate of formation of storage products is identified. Under anoxic conditions, the denitrification process is monitored and, again, the measured rate of nitrogen gas transfer (NTR) matches well with the removal of the oxidised nitrogen compounds (measured chemically). In the anaerobic environment, the enhanced biological phosphorus process was investigated. In this case, the measured sensor signals (HPR and CTR) resulting from acetate uptake were used to determine the ratio of the rates of carbon dioxide production by competing groups of microorganisms, which consequently is a measure of the activity of these organisms. The sensor involves the use of expensive equipment such as a mass spectrometer and requires special gases to operate, thus incurring significant capital and operational costs. This makes the sensor more an advanced laboratory tool than an on-line sensor. (C) 2003 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show how polarization measurements on the output fields generated by parametric down conversion will reveal a violation of multiparticle Bell inequalities, in the regime of both low- and high-output intensity. In this case, each spatially separated system, upon which a measurement is performed, is comprised of more than one particle. In view of the formal analogy with spin systems, the proposal provides an opportunity to test the predictions of quantum mechanics for spatially separated higher spin states. Here the quantum behavior possible even where measurements are performed on systems of large quantum (particle) number may be demonstrated. Our proposal applies to both vacuum-state signal and idler inputs, and also to the quantum-injected parametric amplifier as studied by De Martini The effect of detector inefficiencies is included, and weaker Bell-Clauser-Horne inequalities are derived to enable realistic tests of local hidden variables with auxiliary assumptions for the multiparticle situation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrical conductivity versus dopant ionic radius studies in zirconia- and ceria-based, solid oxide fuel cell (SOFC) electrolyte systems have shown that oxygen-ion conductivity is highest when the host and dopant ions are similar in size [J. Am. Ceram. Soc. 48 (1965) 286; Solid State Ionics 37 (1989) 67; Solid State Ionics 5 (1981) 547]. Under these conditions, it is thought that the conduction paths within the crystal lattice become less distorted [Solid State Ionics 8 (1983) 201]. In this study, binary ZrO2-M2O3 unit cells were expanded, via the partial substitution of Ce+4 for Zr+4 into the lattice, in an attempt to identify new, ternary, zirconia/ceria-based electrolyte systems with enhanced electrical conductivity. The compositions Zr0.75Ce0.08M0.17O1.92 (M = Nd, Sm, Gd, Dy, Ho, Y, Yb, Sc) were prepared using traditional solid state techniques. Bulk phase characterisation and precise lattice parameter measurements were performed with X-ray diffraction techniques. Four-probe DC conductivity measurements between 400 and 900 degreesC showed that the dopant-ion radius influenced electrical conductivity. The conductivity versus dopant-ion radius trends previously observed in zirconia-based, binary systems are clearly apparent in the ternary systems investigated in this study. The addition of ceria was found to have a negative influence on the electrical conductivity over the temperature range 400-900 degreesC. It is suggested that distortion of the oxygen-ion conduction path by the presence of the larger M+3 and Ce+4 species (relative to Zr+4) is the reason for the decreasing electrical conductivity as a function of increasing dopant size and ceria addition, respectively. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The control of the nitrate recirculation flow in a predenitrification system is addressed. An elementary mass balance analysis on the utilisation efficiency of the influent biodegradable COD (bCOD) for nitrate removal indicates that the control problem can be broken down into two parts: maintaining the anoxic zone anoxic (i.e. nitrate is present throughout the anoxic zone) and maximising the usage of influent soluble bCOD for denitrification. Simulation studies using the Simulation Benchmark developed in the European COST program show that both objectives can be achieved by maintaining the nitrate concentration at the outlet of the anoxic zone at around 2 mgN/L. This setpoint appears to be robust towards variations in the influent characteristics and sludge kinetics.