919 resultados para Integrals, Generalized.
Resumo:
Mathematics Subject Classification: 33C05, 33C10, 33C20, 33C60, 33E12, 33E20, 40A30
Resumo:
A generalized Drucker–Prager (GD–P) viscoplastic yield surface model was developed and validated for asphalt concrete. The GD–P model was formulated based on fabric tensor modified stresses to consider the material inherent anisotropy. A smooth and convex octahedral yield surface function was developed in the GD–P model to characterize the full range of the internal friction angles from 0° to 90°. In contrast, the existing Extended Drucker–Prager (ED–P) was demonstrated to be applicable only for a material that has an internal friction angle less than 22°. Laboratory tests were performed to evaluate the anisotropic effect and to validate the GD–P model. Results indicated that (1) the yield stresses of an isotropic yield surface model are greater in compression and less in extension than that of an anisotropic model, which can result in an under-prediction of the viscoplastic deformation; and (2) the yield stresses predicted by the GD–P model matched well with the experimental results of the octahedral shear strength tests at different normal and confining stresses. By contrast, the ED–P model over-predicted the octahedral yield stresses, which can lead to an under-prediction of the permanent deformation. In summary, the rutting depth of an asphalt pavement would be underestimated without considering anisotropy and convexity of the yield surface for asphalt concrete. The proposed GD–P model was demonstrated to be capable of overcoming these limitations of the existing yield surface models for the asphalt concrete.
Resumo:
2000 Mathematics Subject Classification: Primary 46F25, 26A33; Secondary: 46G20
Resumo:
2000 Mathematics Subject Classification: 45A05, 45B05, 45E05,45P05, 46E30
Resumo:
Mathematics Subject Classification: 44A05, 44A35
Resumo:
Mathematics Subject Classification: 33C60, 33C20, 44A15
Resumo:
AMS Subj. Classification: 90C27, 05C85, 90C59
Resumo:
Mathematics Subject Classification 2010: 35M10, 35R11, 26A33, 33C05, 33E12, 33C20.
Resumo:
The paper provides a review of A.M. Mathai's applications of the theory of special functions, particularly generalized hypergeometric functions, to problems in stellar physics and formation of structure in the Universe and to questions related to reaction, diffusion, and reaction-diffusion models. The essay also highlights Mathai's recent work on entropic, distributional, and differential pathways to basic concepts in statistical mechanics, making use of his earlier research results in information and statistical distribution theory. The results presented in the essay cover a period of time in Mathai's research from 1982 to 2008 and are all related to the thematic area of the gravitationally stabilized solar fusion reactor and fractional reaction-diffusion, taking into account concepts of non-extensive statistical mechanics. The time period referred to above coincides also with Mathai's exceptional contributions to the establishment and operation of the Centre for Mathematical Sciences, India, as well as the holding of the United Nations (UN)/European Space Agency (ESA)/National Aeronautics and Space Administration (NASA) of the United States/ Japanese Aerospace Exploration Agency (JAXA) Workshops on basic space science and the International Heliophysical Year 2007, around the world. Professor Mathai's contributions to the latter, since 1991, are a testimony for his social con-science applied to international scientific activity.
Resumo:
Dedicated to 75th birthday of Prof. A.M. Mathai, Mathematical Subject Classification 2010:26A33, 33C10, 33C20, 33C50, 33C60, 26A09
Resumo:
MSC 2010: 44A20, 33C60, 44A10, 26A33, 33C20, 85A99
Resumo:
MSC 2010: 30C45, 30A20, 34A40
Resumo:
MSC 2010: 03E72, 26E50, 28E10
Resumo:
MSC 2010: 26A33, 46Fxx, 58C05 Dedicated to 80-th birthday of Prof. Rudolf Gorenflo
Resumo:
2000 Mathematics Subject Classification: 90C26, 90C20, 49J52, 47H05, 47J20.