866 resultados para Inflammatory Bowel Diseases -- immunology
Resumo:
IL-1 and TNF are important proinflammatory cytokines implicated in both antimicrobial host defense and pathogenesis of diseases with an immune-mediated and/or inflammatory component. Respective studies in the dog have been hampered by the unavailability of reagents allowing the specific measurement of canine cytokine proteins and the effect of canine cytokine neutralization by Ab. Starting with recombinant canine (rcan) IL-1beta and rcanTNF, four polyclonal antisera and 22 mAb specific for rcanIL-1beta and rcanTNF were generated. Their usefulness in neutralization assays was determined. Using cytokine-containing supernatants of canine cells in bioassays, polyclonal antisera neutralized either canine IL-1beta or TNF. TNF was also neutralized by three antibodies developed in this study and one commercial mAb. The usefulness of monoclonal and polyclonal Ab in canine cytokine-specific Ab capture ELISA's was assessed. This resulted in the identification of a commercial mAb combination and one pair developed in this study allowing low levels of TNF to be detected by antibody capture ELISA. The detection limit was 141 pg/ml rcanTNF for both combinations. Using rcanIL-1beta as an antigen allowed the detection of lower concentrations of rcanIL-1beta (20 pg/ml, on the average) by a pair of polyclonal antisera than when monoclonals were used. By using such IL-1beta-specific and TNF-specific ELISA's, the respective cytokines were detected in supernatants of canine PBMC stimulated with LPS or heat-killed Listeria monocytogenes and interferon-gamma combined. Thus, monoclonal and polyclonal reagents were identified allowing the quantitation of canine IL-1beta and TNF production in vitro, and the neutralization of these cytokines.
Resumo:
OBJECTIVE A controlled clinical trial was conducted to evaluate the effects of oral prophylaxis on halitosis-associated, immunological and microbiological parameters. METHODS Thirty subjects were included in this controlled clinical trial (patients with generalized chronic periodontitis and controls without clinical attachment loss; each n = 15). Before oral prophylaxis and 14 days after (including tongue cleaning) volatile sulphur compounds (VSC), organoleptic scores and a tongue coating index were evaluated. The levels of IL-1β, IL-8, IL-10 and MMP-8 were measured in GCF, and also major periodontal pathogens were detected. Data were statistically analysed using anova and paired t-test. RESULTS Supragingival plaque and calculus removal with combined tongue cleaning was able to reduce significantly (P < 0.05) the VSC values in both groups (no significant differences between both groups). Two weeks after periodontal debridement, the VSC values were observed in the periodontitis group, but not in the control group, similar to the baseline values. The difference between the groups was statistically significant (P < 0.05). Only a repeated prophylaxis session in the periodontitis group was able to reduce VSC values significantly in comparison with baseline (P < 0.05). Organoleptic scores (10 and 30 cm) were significantly different (P < 0.05) between both groups before and after the treatment. Periodontal pathogens and host-derived markers were not significantly affected by a single prophylaxis session. CONCLUSIONS Oral prophylaxis may result in a significant decrease in VSC values. However, in periodontal diseases, a more complex treatment seems to be necessary.
Resumo:
Throughout the last decade, increasing awareness has been raised on issues related to reproduction in rheumatic diseases including basic research to clarify the important role of estrogens in the etiology and pathophysiology of immune/inflammatory diseases. Sub- or infertility is a heterogeneous condition that can be related to immunological mechanisms, to pregnancy loss, to disease burden, to therapy, and to choices in regard to family size. Progress in reproductive medicine has made it possible for more patients with rheumatic disease to have children. Active disease in women with rheumatoid arthritis (RA) affects their children's birth weight and may have long-term effects on their future health status. Pregnancy complications as preeclampsia and intrauterine growth restriction are still increased in patients with systemic lupus erythematosus (SLE) and antiphospholipid syndrome (APS), however, biomarkers can monitor adverse events, and several new therapies may improve outcomes. Pregnancies in women with APS remain a challenge, and better therapies for the obstetric APS are needed. New prospective studies indicate improved outcomes for pregnancies in women with rare diseases like systemic sclerosis and vasculitis. TNF inhibitors hold promise for maintaining remission in rheumatological patients and may be continued at least in the first half of pregnancy. Pre-conceptional counseling and interdisciplinary management of pregnancies are essential for ensuring optimal pregnancy outcomes.
Neutrophils mediate blood-spinal cord barrier disruption in demyelinating neuroinflammatory diseases
Resumo:
Disruption of the blood-brain and blood-spinal cord barriers (BBB and BSCB, respectively) and immune cell infiltration are early pathophysiological hallmarks of multiple sclerosis (MS), its animal model experimental autoimmune encephalomyelitis (EAE), and neuromyelitis optica (NMO). However, their contribution to disease initiation and development remains unclear. In this study, we induced EAE in lys-eGFP-ki mice and performed single, nonterminal intravital imaging to investigate BSCB permeability simultaneously with the kinetics of GFP(+) myeloid cell infiltration. We observed a loss in BSCB integrity within a day of disease onset, which paralleled the infiltration of GFP(+) cells into the CNS and lasted for ∼4 d. Neutrophils accounted for a significant proportion of the circulating and CNS-infiltrating myeloid cells during the preclinical phase of EAE, and their depletion delayed the onset and reduced the severity of EAE while maintaining BSCB integrity. We also show that neutrophils collected from the blood or bone marrow of EAE mice transmigrate more efficiently than do neutrophils of naive animals in a BBB cell culture model. Moreover, using intravital videomicroscopy, we demonstrate that the IL-1R type 1 governs the firm adhesion of neutrophils to the inflamed spinal cord vasculature. Finally, immunostaining of postmortem CNS material obtained from an acutely ill multiple sclerosis patient and two neuromyelitis optica patients revealed instances of infiltrated neutrophils associated with regions of BBB or BSCB leakage. Taken together, our data provide evidence that neutrophils are involved in the initial events that take place during EAE and that they are intimately linked with the status of the BBB/BSCB.
Resumo:
Inflammation is one possible mechanism underlying the associations between mental disorders and cardiovascular diseases (CVD). However, studies on mental disorders and inflammation have yielded inconsistent results and the majority did not adjust for potential confounding factors. We examined the associations of several pro-inflammatory cytokines (IL-1β, IL-6 and TNF-α) and high sensitive C-reactive protein (hsCRP) with lifetime and current mood, anxiety and substance use disorders (SUD), while adjusting for multiple covariates. The sample included 3719 subjects, randomly selected from the general population, who underwent thorough somatic and psychiatric evaluations. Psychiatric diagnoses were made with a semi-structured interview. Major depressive disorder was subtyped into "atypical", "melancholic", "combined atypical-melancholic" and "unspecified". Associations between inflammatory markers and psychiatric diagnoses were assessed using multiple linear and logistic regression models. Lifetime bipolar disorders and atypical depression were associated with increased levels of hsCRP, but not after multivariate adjustment. After multivariate adjustment, SUD remained associated with increased hsCRP levels in men (β = 0.13 (95% CI: 0.03,0.23)) but not in women. After multivariate adjustment, lifetime combined and unspecified depression were associated with decreased levels of IL-6 (β = -0.27 (-0.51,-0.02); β = -0.19 (-0.34,-0.05), respectively) and TNF-α (β = -0.16 (-0.30,-0.01); β = -0.10 (-0.19,-0.02), respectively), whereas current combined and unspecified depression were associated with decreased levels of hsCRP (β = -0.20 (-0.39,-0.02); β = -0.12 (-0.24,-0.01), respectively). Our data suggest that the significant associations between increased hsCRP levels and mood disorders are mainly attributable to the effects of comorbid disorders, medication as well as behavioral and physical CVRFs.
Resumo:
The porcine skin has striking similarities to the human skin in terms of general structure, thickness, hair follicle content, pigmentation, collagen and lipid composition. This has been the basis for numerous studies using the pig as a model for wound healing, transdermal delivery, dermal toxicology, radiation and UVB effects. Considering that the skin also represents an immune organ of utmost importance for health, immune cells present in the skin of the pig will be reviewed. The focus of this review is on dendritic cells, which play a central role in the skin immune system as they serve as sentinels in the skin, which offers a large surface area exposed to the environment. Based on a literature review and original data we propose a classification of porcine dendritic cell subsets in the skin corresponding to the subsets described in the human skin. The equivalent of the human CD141(+) DC subset is CD1a(-)CD4(-)CD172a(-)CADM1(high), that of the CD1c(+) subset is CD1a(+)CD4(-)CD172a(+)CADM1(+/low), and porcine plasmacytoid dendritic cells are CD1a(-)CD4(+)CD172a(+)CADM1(-). CD209 and CD14 could represent markers of inflammatory monocyte-derived cells, either dendritic cells or macrophages. Future studies for example using transriptomic analysis of sorted populations are required to confirm the identity of these cells.
Resumo:
Chinese Shar-Pei dogs have a high prevalence of hypocobalaminemia and are commonly presented with clinical signs suggestive of severe and long-standing gastrointestinal disease such as diarrhea, vomiting, and/or weight loss. The aim of the current study was to evaluate serum concentrations of inflammatory markers, markers for intestinal disease, and immunological markers in Shar-Peis with hypocobalaminemia or normocobalaminemia (serum cobalamin concentrations within the reference interval). Serum samples from Shar-Peis were collected from various parts of the United States. Serum concentrations of inflammatory markers (i.e., C-reactive protein [CRP], calprotectin [CP], and S100A12), hyaluronic acid (HA, a marker for cutaneous mucinosis), and analytes commonly altered in chronic intestinal diseases (i.e., albumin, zinc, alpha1-proteinease inhibitor [α1PI], immunoglobulin [Ig]A, and IgM) were compared between Shar-Peis with hypocobalaminemia and Shar-Peis with normocobalaminemia. Serum concentrations of CRP, CP, S100A12, HA, zinc, and cα1-PI concentrations did not differ between hypocobalaminemic and normocobalaminemic Shar-Peis (P > 0.05). Serum concentrations of albumin were significantly lower in hypocobalaminemic Shar-Peis (median: 2.5 g/dl) than in normocobalaminemic Shar-Peis (median: 2.9 g/dl; P < 0.0001). Higher serum IgA concentrations and lower serum IgM concentrations were observed in hypocobalaminemic Shar-Peis (median: 1.7 g/l and 0.8 g/l, respectively) than in normocobalaminemic Shar-Peis (median: 0.7 g/l and 1.9 g/l, respectively; both P < 0.0001). In conclusion, no difference was found in serum concentrations of CRP, CP, S100A12, and HA between hypocobalaminemic and normocobalaminemic Shar-Peis whereas some differences were observed in analytes (e.g., albumin, IgA, and IgM) that may be altered in patients with chronic enteropathies.
Resumo:
The consumption of immunoglobulins (Ig) is increasing due to better recognition of antibody deficiencies, an aging population, and new indications. This review aims to examine the various dosing regimens and research developments in the established and in some of the relevant off-label indications in Europe. The background to the current regulatory settings in Europe is provided as a backdrop for the latest developments in primary and secondary immunodeficiencies and in immunomodulatory indications. In these heterogeneous areas, clinical trials encompassing different routes of administration, varying intervals, and infusion rates are paving the way toward more individualized therapy regimens. In primary antibody deficiencies, adjustments in dosing and intervals will depend on the clinical presentation, effective IgG trough levels and IgG metabolism. Ideally, individual pharmacokinetic profiles in conjunction with the clinical phenotype could lead to highly tailored treatment. In practice, incremental dosage increases are necessary to titrate the optimal dose for more severely ill patients. Higher intravenous doses in these patients also have beneficial immunomodulatory effects beyond mere IgG replacement. Better understanding of the pharmacokinetics of Ig therapy is leading to a move away from simplistic "per kg" dosing. Defective antibody production is common in many secondary immunodeficiencies irrespective of whether the causative factor was lymphoid malignancies (established indications), certain autoimmune disorders, immunosuppressive agents, or biologics. This antibody failure, as shown by test immunization, may be amenable to treatment with replacement Ig therapy. In certain immunomodulatory settings [e.g., idiopathic thrombocytopenic purpura (ITP)], selection of patients for Ig therapy may be enhanced by relevant biomarkers in order to exclude non-responders and thus obtain higher response rates. In this review, the developments in dosing of therapeutic immunoglobulins have been limited to high and some medium priority indications such as ITP, Kawasaki' disease, Guillain-Barré syndrome, chronic inflammatory demyelinating polyradiculoneuropathy, myasthenia gravis, multifocal motor neuropathy, fetal alloimmune thrombocytopenia, fetal hemolytic anemia, and dermatological diseases.
Resumo:
Exposure of biological membranes to reactive oxygen species creates a complex mixture of distinct oxidized phospholipid (OxPL) species, which contribute to the development of chronic inflammatory diseases and metabolic disorders. While the ability of OxPL to modulate biological processes is increasingly recognized, the nature of the biologically active OxPL species and the molecular mechanisms underlying their signaling remain largely unknown. We have employed a combination of mass spectrometry, synthetic chemistry, and immunobiology approaches to characterize the OxPL generated from the abundant phospholipid 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (PAPC) and investigated their bioactivities and signaling pathways in vitro and in vivo. Our study defines epoxycyclopentenones as potent anti-inflammatory lipid mediators that mimic the signaling of endogenous, pro-resolving prostanoids by activating the transcription factor nuclear factor E2-related factor 2 (Nrf2). Using a library of OxPL variants, we identified a synthetic OxPL derivative, which alleviated endotoxin-induced lung injury and inhibited development of pro-inflammatory T helper (Th) 1 cells. These findings provide a molecular basis for the negative regulation of inflammation by lipid peroxidation products and propose a novel class of highly bioactive compounds for the treatment of inflammatory diseases.
Resumo:
Biologic agents (also termed biologicals or biologics) are therapeutics that are synthesized by living organisms and directed against a specific determinant, for example, a cytokine or receptor. In inflammatory and autoimmune diseases, biologicals have revolutionized the treatment of several immune-mediated disorders. Biologicals have also been tested in allergic disorders. These include agents targeting IgE; T helper 2 (Th2)-type and Th2-promoting cytokines, including interleukin-4 (IL-4), IL-5, IL-9, IL-13, IL-31, and thymic stromal lymphopoietin (TSLP); pro-inflammatory cytokines, such as IL-1β, IL-12, IL-17A, IL-17F, IL-23, and tumor necrosis factor (TNF); chemokine receptor CCR4; and lymphocyte surface and adhesion molecules, including CD2, CD11a, CD20, CD25, CD52, and OX40 ligand. In this task force paper of the Interest Group on Biologicals of the European Academy of Allergy and Clinical Immunology, we review biologicals that are currently available or tested for the use in various allergic and urticarial pathologies, by providing an overview on their state of development, area of use, adverse events, and future research directions.
Resumo:
BACKGROUND The success of an intervention to prevent the complications of an infection is influenced by the natural history of the infection. Assumptions about the temporal relationship between infection and the development of sequelae can affect the predicted effect size of an intervention and the sample size calculation. This study investigates how a mathematical model can be used to inform sample size calculations for a randomised controlled trial (RCT) using the example of Chlamydia trachomatis infection and pelvic inflammatory disease (PID). METHODS We used a compartmental model to imitate the structure of a published RCT. We considered three different processes for the timing of PID development, in relation to the initial C. trachomatis infection: immediate, constant throughout, or at the end of the infectious period. For each process we assumed that, of all women infected, the same fraction would develop PID in the absence of an intervention. We examined two sets of assumptions used to calculate the sample size in a published RCT that investigated the effect of chlamydia screening on PID incidence. We also investigated the influence of the natural history parameters of chlamydia on the required sample size. RESULTS The assumed event rates and effect sizes used for the sample size calculation implicitly determined the temporal relationship between chlamydia infection and PID in the model. Even small changes in the assumed PID incidence and relative risk (RR) led to considerable differences in the hypothesised mechanism of PID development. The RR and the sample size needed per group also depend on the natural history parameters of chlamydia. CONCLUSIONS Mathematical modelling helps to understand the temporal relationship between an infection and its sequelae and can show how uncertainties about natural history parameters affect sample size calculations when planning a RCT.
Resumo:
Drugs targeting the immune system such as corticosteroids, antihistamines and immunosuppressants have been widely exploited in the treatment of inflammatory, allergic and autoimmune disorders during the second half of the 20th century. The recent advances in immunopharmacological research have made available new classes of clinically relevant drugs. These comprise protein kinase inhibitors and biologics, such as monoclonal antibodies, that selectively modulate the immune response not only in cancer and autoimmunity but also in a number of other human pathologies. Likewise, more effective vaccines utilizing novel antigens and adjuvants are valuable tools for the prevention of transmissible infectious diseases and for allergen-specific immunotherapy. Consequently, immunopharmacology is presently considered as one of the expanding fields of pharmacology. Immunopharmacology addresses the selective regulation of immune responses and aims to uncover and exploit beneficial therapeutic options for typical and non-typical immune system-driven unmet clinical needs. While in the near future a number of new agents will be introduced, improving the effectiveness and safety of those currently in use is imperative for all researchers and clinicians working in the fields of immunology, pharmacology and drug discovery. The newly formed ImmuPhar (http://iuphar.us/index.php/sections-subcoms/immunopharmacology) is the Immunopharmacology Section of the International Union of Basic and Clinical Pharmacology (IUPHAR, http://iuphar.us/). ImmuPhar provides a unique international expert-lead platform that aims to dissect and promote the growing understanding of immune (patho)physiology. Moreover, it challenges the identification and validation of drug targets and lead candidates for the treatment of many forms of debilitating disorders, including, among others, cancer, allergies, autoimmune and metabolic diseases.
Resumo:
In addition to antigen processing, immunoproteasomes were recently shown to exert functions influencing cytokine production by monocytes and T cells, T-helper cell differentiation, and T-cell survival. Moreover, selective inhibition of the immunoproteasome subunit LMP7 ameliorated symptoms of autoimmune diseases including CD4(+) T-cell mediated EAE. In this study, we show that LMP7 also plays a crucial role in the pathogenesis of lymphocytic choriomeningitis virus (LCMV)-induced meningitis mediated by CTLs. Mice lacking functional LMP7 display delayed and reduced clinical signs of disease accompanied by a strongly decreased inflammatory infiltration into the brain. Interestingly, we found that selective inhibition and genetic deficiency of LMP7 affect the pathogenesis of LCMV-induced meningitis in a distinct manner. Our findings support the important role of LMP7 in inflammatory disorders and suggest immunoproteasome inhibition as a novel strategy against inflammation-induced neuropathology in the CNS.
Resumo:
Understanding the regulation of T-cell responses during inflammation and auto-immunity is fundamental for designing efficient therapeutic strategies against immune diseases. In this regard, prostaglandin E2 (PGE2) is mostly considered a myeloid-derived immunosuppressive molecule. We describe for the first time that T cells secrete PGE2 during T-cell receptor stimulation. In addition, we show that autocrine PGE2 signaling through EP receptors is essential for optimal CD4(+) T-cell activation in vitro and in vivo, and for T helper 1 (Th1) and regulatory T cell differentiation. PGE2 was found to provide additive co-stimulatory signaling through AKT activation. Intravital multiphoton microscopy showed that triggering EP receptors in T cells is also essential for the stability of T cell-dendritic cell (DC) interactions and Th-cell accumulation in draining lymph nodes (LNs) during inflammation. We further demonstrated that blocking EP receptors in T cells during the initial phase of collagen-induced arthritis in mice resulted in a reduction of clinical arthritis. This could be attributable to defective T-cell activation, accompanied by a decline in activated and interferon-γ-producing CD4(+) Th1 cells in draining LNs. In conclusion, we prove that T lymphocytes secret picomolar concentrations of PGE2, which in turn provide additive co-stimulatory signaling, enabling T cells to attain a favorable activation threshold. PGE2 signaling in T cells is also required for maintaining long and stable interactions with DCs within LNs. Blockade of EP receptors in vivo impairs T-cell activation and development of T cell-mediated inflammatory responses. This may have implications in various pathophysiological settings.
Resumo:
The immune system has developed strategies to maintain a homeostatic relationship with the resident microbiota. IgA is central in holding this relationship, as the most dominant immunoglobulin isotype at the mucosal surface of the intestine. Recent studies report a role for IgA in shaping the composition of the intestinal microbiota and exploit strategies to characterise IgA-binding bacteria for their inflammatory potential. We review these findings here, and place them in context of the current understanding of the range of microorganisms that contribute to the IgA repertoire and the pathways that determine the quality of the IgA response. We examine why only certain intestinal microbes are coated with IgA, and discuss how understanding the determinants of this specific responsiveness may provide insight into diseases associated with dysbiosis.