947 resultados para Infeasible solution space search


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Textual cultural heritage artefacts present two serious problems for the encoder: how to record different or revised versions of the same work, and how to encode conflicting perspectives of the text using markup. Both are forms of textual variation, and can be accurately recorded using a multi-version document, based on a minimally redundant directed graph that cleanly separates variation from content.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A hierarchical structure is used to represent the content of the semi-structured documents such as XML and XHTML. The traditional Vector Space Model (VSM) is not sufficient to represent both the structure and the content of such web documents. Hence in this paper, we introduce a novel method of representing the XML documents in Tensor Space Model (TSM) and then utilize it for clustering. Empirical analysis shows that the proposed method is scalable for a real-life dataset as well as the factorized matrices produced from the proposed method helps to improve the quality of clusters due to the enriched document representation with both the structure and the content information.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Australian beach is now accepted as a significant part of Australian national culture and identity. However, Huntsman (2001) and Booth (2001) both believe that the beach is dying: “intellectuals have failed to apply to the beach the attention they have lavished on the bush…” (Huntsman 2001, 218). Yet the beach remains a prominent image in contemporary literature and film; authors such as Tim Winton and Robert Drewe frequently set their stories in and around the coast. Although initially considered a space of myth (Fiske, Hodge, and Turner 1987), Meaghan Morris labelled the beach as ‘ordinary’ (1998), and as recently as 2001 in the wake of the Sydney Olympic Games, Bonner, McKee, and Mackay termed the beach ‘tacky’ and ‘familiar’. The beach, it appears, defies an easy categorisation. In fact, I believe the beach is more than merely mythic or ordinary, or a combination of the two. Instead it is an imaginative space, seamlessly shifting its metaphorical meanings dependent on readings of the texts. My studies examine the beach through five common beach myths; this paper will explore the myth of the beach as an egalitarian space. Contemporary Australian national texts no longer conform to these mythical representations – (in fact, was the beach ever a space of equality?), instead creating new definitions for the beach space that continually shifts in meaning. Recent texts such as Tim Winton’s Breath (2008) and Stephen Orr’s Time’s Long Ruin (2010) lay a more complex metaphorical meaning upon the beach space. This paper will explore the beach as a space of egalitarianism in conjunction with recent Australian fiction and films in order to discover how the contemporary beach is represented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents Multi-Step A* (MSA*), a search algorithm based on A* for multi-objective 4D vehicle motion planning (three spatial and one time dimension). The research is principally motivated by the need for offline and online motion planning for autonomous Unmanned Aerial Vehicles (UAVs). For UAVs operating in large, dynamic and uncertain 4D environments, the motion plan consists of a sequence of connected linear tracks (or trajectory segments). The track angle and velocity are important parameters that are often restricted by assumptions and grid geometry in conventional motion planners. Many existing planners also fail to incorporate multiple decision criteria and constraints such as wind, fuel, dynamic obstacles and the rules of the air. It is shown that MSA* finds a cost optimal solution using variable length, angle and velocity trajectory segments. These segments are approximated with a grid based cell sequence that provides an inherent tolerance to uncertainty. Computational efficiency is achieved by using variable successor operators to create a multi-resolution, memory efficient lattice sampling structure. Simulation studies on the UAV flight planning problem show that MSA* meets the time constraints of online replanning and finds paths of equivalent cost but in a quarter of the time (on average) of vector neighbourhood based A*.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the research focuses in the integer least squares problem is the decorrelation technique to reduce the number of integer parameter search candidates and improve the efficiency of the integer parameter search method. It remains as a challenging issue for determining carrier phase ambiguities and plays a critical role in the future of GNSS high precise positioning area. Currently, there are three main decorrelation techniques being employed: the integer Gaussian decorrelation, the Lenstra–Lenstra–Lovász (LLL) algorithm and the inverse integer Cholesky decorrelation (IICD) method. Although the performance of these three state-of-the-art methods have been proved and demonstrated, there is still a potential for further improvements. To measure the performance of decorrelation techniques, the condition number is usually used as the criterion. Additionally, the number of grid points in the search space can be directly utilized as a performance measure as it denotes the size of search space. However, a smaller initial volume of the search ellipsoid does not always represent a smaller number of candidates. This research has proposed a modified inverse integer Cholesky decorrelation (MIICD) method which improves the decorrelation performance over the other three techniques. The decorrelation performance of these methods was evaluated based on the condition number of the decorrelation matrix, the number of search candidates and the initial volume of search space. Additionally, the success rate of decorrelated ambiguities was calculated for all different methods to investigate the performance of ambiguity validation. The performance of different decorrelation methods was tested and compared using both simulation and real data. The simulation experiment scenarios employ the isotropic probabilistic model using a predetermined eigenvalue and without any geometry or weighting system constraints. MIICD method outperformed other three methods with conditioning improvements over LAMBDA method by 78.33% and 81.67% without and with eigenvalue constraint respectively. The real data experiment scenarios involve both the single constellation system case and dual constellations system case. Experimental results demonstrate that by comparing with LAMBDA, MIICD method can significantly improve the efficiency of reducing the condition number by 78.65% and 97.78% in the case of single constellation and dual constellations respectively. It also shows improvements in the number of search candidate points by 98.92% and 100% in single constellation case and dual constellations case.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Maps are used to represent three-dimensional space and are integral to a range of everyday experiences. They are increasingly used in mathematics, being prominent both in school curricula and as a form of assessing students understanding of mathematics ideas. In order to successfully interpret maps, students need to be able to understand that maps: represent space, have their own perspective and scale, and their own set of symbols and texts. Despite the fact that maps have an increased prevalence in society and school, there is evidence to suggest that students have difficulty interpreting maps. This study investigated 43 primary-aged students’ (aged 9-12 years) verbal and gestural behaviours as they engaged with and solved map tasks. Within a multiliteracies framework that focuses on spatial, visual, linguistic, and gestural elements, the study investigated how students interpret map tasks. Specifically, the study sought to understand students’ skills and approaches used to solving map tasks and the gestural behaviours they utilised as they engaged with map tasks. The investigation was undertaken using the Knowledge Discovery in Data (KDD) design. The design of this study capitalised on existing research data to carry out a more detailed analysis of students’ interpretation of map tasks. Video data from an existing data set was reorganised according to two distinct episodes—Task Solution and Task Explanation—and analysed within the multiliteracies framework. Content Analysis was used with these data and through anticipatory data reduction techniques, patterns of behaviour were identified in relation to each specific map task by looking at task solution, task correctness and gesture use. The findings of this study revealed that students had a relatively sound understanding of general mapping knowledge such as identifying landmarks, using keys, compass points and coordinates. However, their understanding of mathematical concepts pertinent to map tasks including location, direction, and movement were less developed. Successful students were able to interpret the map tasks and apply relevant mathematical understanding to navigate the spatial demands of the map tasks while the unsuccessful students were only able to interpret and understand basic map conventions. In terms of their gesture use, the more difficult the task, the more likely students were to exhibit gestural behaviours to solve the task. The most common form of gestural behaviour was deictic, that is a pointing gesture. Deictic gestures not only aided the students capacity to explain how they solved the map tasks but they were also a tool which assisted them to navigate and monitor their spatial movements when solving the tasks. There were a number of implications for theory, learning and teaching, and test and curriculum design arising from the study. From a theoretical perspective, the findings of the study suggest that gesturing is an important element of multimodal engagement in mapping tasks. In terms of teaching and learning, implications include the need for students to utilise gesturing techniques when first faced with new or novel map tasks. As students become more proficient in solving such tasks, they should be encouraged to move beyond a reliance on such gesture use in order to progress to more sophisticated understandings of map tasks. Additionally, teachers need to provide students with opportunities to interpret and attend to multiple modes of information when interpreting map tasks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Daylighting in tropical and sub-tropical climates presents a unique challenge that is generally not well understood by designers. In a sub-tropical region such as Brisbane, Australia the majority of the year comprises of sunny clear skies with few overcast days and as a consequence windows can easily become sources of overheating and glare. The main strategy in dealing with this issue is extensive shading on windows. However, this in turn prevents daylight penetration into buildings often causing an interior to appear gloomy and dark even though there is more than sufficient daylight available. As a result electric lighting is the main source of light, even during the day. Innovative daylight devices which redirect light from windows offer a potential solution to this issue. These devices can potentially improve daylighting in buildings by increasing the illumination within the environment decreasing the high contrast between the window and work regions and deflecting potentially glare causing sunlight away from the observer. However, the performance of such innovative daylighting devices are generally quantified under overcast skies (i.e. daylight factors) or skies without sun, which are typical of European climates and are misleading when considering these devices for tropical or sub-tropical climates. This study sought to compare four innovative window daylighting devices in RADIANCE; light shelves, laser cut panels, micro-light guides and light redirecting blinds. These devices were simulated in RADIANCE under sub-tropical skies (for Brisbane) within the test case of a typical CBD office space. For each device the quantity of light redirected and its distribution within the space was used as the basis for comparison. In addition, glare analysis on each device was conducted using Weinold and Christoffersons evalglare. The analysis was conducted for selected hours for a day in each season. The majority of buildings that humans will occupy in their lifetime are already constructed, and extensive remodelling of most of these buildings is unlikely. Therefore the most effective way to improve daylighting in the near future will be through the alteration existing window spaces. Thus it will be important to understand the performance of daylighting systems with respect to the climate it is to be used in. This type of analysis is important to determine the applicability of a daylighting strategy so that designers can achieve energy efficiency as well the health benefits of natural daylight.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Today, polarisation of the fashion textile industry has already begun as smart, intelligent and conscientious fashion emerges as a backlash to the experience of choice fatigue, poor quality, dumb design and greenwash. But the process, development and manufacture of fashion textiles is complex. And the demand, both customer and industry driven, for new integrated product policies,2 designed to minimise environmental impacts by looking at all phases of a product's life cycle, is problematic due to complexity and a lack of networking tools. This article explores these issues through the construct of the department store of the future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traditional approaches to the use of machine learning algorithms do not provide a method to learn multiple tasks in one-shot on an embodied robot. It is proposed that grounding actions within the sensory space leads to the development of action-state relationships which can be re-used despite a change in task. A novel approach called an Experience Network is developed and assessed on a real-world robot required to perform three separate tasks. After grounded representations were developed in the initial task, only minimal further learning was required to perform the second and third task.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Saffman-Taylor finger problem is to predict the shape and,in particular, width of a finger of fluid travelling in a Hele-Shaw cell filled with a different, more viscous fluid. In experiments the width is dependent on the speed of propagation of the finger, tending to half the total cell width as the speed increases. To predict this result mathematically, nonlinear effects on the fluid interface must be considered; usually surface tension is included for this purpose. This makes the mathematical problem suffciently diffcult that asymptotic or numerical methods must be used. In this paper we adapt numerical methods used to solve the Saffman-Taylor finger problem with surface tension to instead include the effect of kinetic undercooling, a regularisation effect important in Stefan melting-freezing problems, for which Hele-Shaw flow serves as a leading order approximation when the specific heat of a substance is much smaller than its latent heat. We find the existence of a solution branch where the finger width tends to zero as the propagation speed increases, disagreeing with some aspects of the asymptotic analysis of the same problem. We also find a second solution branch, supporting the idea of a countably infinite number of branches as with the surface tension problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Current knowledge about the relationship between transport disadvantage and activity space size is limited to urban areas, and as a result, very little is known to date about this link in a rural context. In addition, although research has identified transport disadvantaged groups based on their size of activity spaces, these studies have, however, not empirically explained such differences and the result is often a poor identification of the problems facing disadvantaged groups. Research has shown that transport disadvantage varies over time. The static nature of analysis using the activity space concept in previous research studies has lacked the ability to identify transport disadvantage in time. Activity space is a dynamic concept; and therefore possesses a great potential in capturing temporal variations in behaviour and access opportunities. This research derives measures of the size and fullness of activity spaces for 157 individuals for weekdays, weekends, and for a week using weekly activity-travel diary data from three case study areas located in rural Northern Ireland. Four focus groups were also conducted in order to triangulate the quantitative findings and to explain the differences between different socio-spatial groups. The findings of this research show that despite having a smaller sized activity space, individuals were not disadvantaged because they were able to access their required activities locally. Car-ownership was found to be an important life line in rural areas. Temporal disaggregation of the data reveals that this is true only on weekends due to a lack of public transport services. In addition, despite activity spaces being at a similar size, the fullness of activity spaces of low-income individuals was found to be significantly lower compared to their high-income counterparts. Focus group data shows that financial constraint, poor connections both between public transport services and between transport routes and opportunities forced individuals to participate in activities located along the main transport corridors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report provides an evaluation of the Capalaba Youth Space.The evaluation included elements of process and impact evaluation and used a participatory action research approach informed by engagement processes, focus groups, a community survey, interviews and secondary analysis of existing data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Estimating and predicting degradation processes of engineering assets is crucial for reducing the cost and insuring the productivity of enterprises. Assisted by modern condition monitoring (CM) technologies, most asset degradation processes can be revealed by various degradation indicators extracted from CM data. Maintenance strategies developed using these degradation indicators (i.e. condition-based maintenance) are more cost-effective, because unnecessary maintenance activities are avoided when an asset is still in a decent health state. A practical difficulty in condition-based maintenance (CBM) is that degradation indicators extracted from CM data can only partially reveal asset health states in most situations. Underestimating this uncertainty in relationships between degradation indicators and health states can cause excessive false alarms or failures without pre-alarms. The state space model provides an efficient approach to describe a degradation process using these indicators that can only partially reveal health states. However, existing state space models that describe asset degradation processes largely depend on assumptions such as, discrete time, discrete state, linearity, and Gaussianity. The discrete time assumption requires that failures and inspections only happen at fixed intervals. The discrete state assumption entails discretising continuous degradation indicators, which requires expert knowledge and often introduces additional errors. The linear and Gaussian assumptions are not consistent with nonlinear and irreversible degradation processes in most engineering assets. This research proposes a Gamma-based state space model that does not have discrete time, discrete state, linear and Gaussian assumptions to model partially observable degradation processes. Monte Carlo-based algorithms are developed to estimate model parameters and asset remaining useful lives. In addition, this research also develops a continuous state partially observable semi-Markov decision process (POSMDP) to model a degradation process that follows the Gamma-based state space model and is under various maintenance strategies. Optimal maintenance strategies are obtained by solving the POSMDP. Simulation studies through the MATLAB are performed; case studies using the data from an accelerated life test of a gearbox and a liquefied natural gas industry are also conducted. The results show that the proposed Monte Carlo-based EM algorithm can estimate model parameters accurately. The results also show that the proposed Gamma-based state space model have better fitness result than linear and Gaussian state space models when used to process monotonically increasing degradation data in the accelerated life test of a gear box. Furthermore, both simulation studies and case studies show that the prediction algorithm based on the Gamma-based state space model can identify the mean value and confidence interval of asset remaining useful lives accurately. In addition, the simulation study shows that the proposed maintenance strategy optimisation method based on the POSMDP is more flexible than that assumes a predetermined strategy structure and uses the renewal theory. Moreover, the simulation study also shows that the proposed maintenance optimisation method can obtain more cost-effective strategies than a recently published maintenance strategy optimisation method by optimising the next maintenance activity and the waiting time till the next maintenance activity simultaneously.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The traditional Vector Space Model (VSM) is not able to represent both the structure and the content of XML documents. This paper introduces a novel method of representing XML documents in a Tensor Space Model (TSM) and then utilizing it for clustering. Empirical analysis shows that the proposed method is scalable for large-sized datasets; as well, the factorized matrices produced from the proposed method help to improve the quality of clusters through the enriched document representation of both structure and content information.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In vector space based approaches to natural language processing, similarity is commonly measured by taking the angle between two vectors representing words or documents in a semantic space. This is natural from a mathematical point of view, as the angle between unit vectors is, up to constant scaling, the only unitarily invariant metric on the unit sphere. However, similarity judgement tasks reveal that human subjects fail to produce data which satisfies the symmetry and triangle inequality requirements for a metric space. A possible conclusion, reached in particular by Tversky et al., is that some of the most basic assumptions of geometric models are unwarranted in the case of psychological similarity, a result which would impose strong limits on the validity and applicability vector space based (and hence also quantum inspired) approaches to the modelling of cognitive processes. This paper proposes a resolution to this fundamental criticism of of the applicability of vector space models of cognition. We argue that pairs of words imply a context which in turn induces a point of view, allowing a subject to estimate semantic similarity. Context is here introduced as a point of view vector (POVV) and the expected similarity is derived as a measure over the POVV's. Different pairs of words will invoke different contexts and different POVV's. Hence the triangle inequality ceases to be a valid constraint on the angles. We test the proposal on a few triples of words and outline further research.