884 resultados para Industrial efficiency -- Sri Lanka -- Measurement -- Data processing.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mestrado em Economia Monetária e Financeira

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study follows the framework of Afonso, Schuknecht, and Tanzi (2005), aiming to look at the public expenditure of 20 OECD countries for the period 2009-2013, from the per- spective of efficiency and assess if these developed countries are performing efficiently compared to each other. Public Sector Performance (PSP) and Public Sector Efficiency (PSE) indicators were constructed and Data Envelopment Analysis was conducted. The results show that the only country that performed on the efficiency frontier is Switzerland. The average input-oriented efficiency score is equal to 0.732. That is, on average countries could have reduced the level of public expenditure by 26.8% and still achieved the same level of public performance. The average output-oriented efficiency score is 0.769 denoting that on average the sample countries could have increased their performance by 23.1% by employing the same level of public expenditure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Similar Exposure Group (SEG) can be created through the evaluation of workers performing the same or similar task, hazards they are exposed to, frequency and duration of their exposures, engineering controls available during their operations, personal protective equipment used, and exposure data. For this report, the samples of one facility that has collected nearly 40,000 various types of samples will be evaluated to determine if the creation of a SEG can be supported. The data will be reviewed for consistency with collection methods and laboratory detection limits. A subset of the samples may be selected based on the review. Data will also be statistically evaluated in order to determine whether the data is sufficient to terminate the sampling. IHDataAnalyst V1.27 will be used to assess the data. This program uses Bayesian Analysis to assist in making determinations. The 95 percent confidence interval will be calculated and evaluated in making decisions. This evaluation will be used to determine if a SEG can be created for any of the workers and determine the need for future sample collection. The data and evaluation presented in this report have been selected and evaluated specifically for the purposes of this project.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the current world geospatial information is being demanded in almost real time, which requires the speed at which this data is processed and made available to the user to be at an all-time high. In order to keep up with this ever increasing speed, analysts must find ways to increase their productivity. At the same time the demand for new analysts is high, and current methods of training are long and can be costly. Through the use of human computer interactions and basic networking systems, this paper explores new ways to increase efficiency in data processing and analyst training.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To analyze the characteristics and predict the dynamic behaviors of complex systems over time, comprehensive research to enable the development of systems that can intelligently adapt to the evolving conditions and infer new knowledge with algorithms that are not predesigned is crucially needed. This dissertation research studies the integration of the techniques and methodologies resulted from the fields of pattern recognition, intelligent agents, artificial immune systems, and distributed computing platforms, to create technologies that can more accurately describe and control the dynamics of real-world complex systems. The need for such technologies is emerging in manufacturing, transportation, hazard mitigation, weather and climate prediction, homeland security, and emergency response. Motivated by the ability of mobile agents to dynamically incorporate additional computational and control algorithms into executing applications, mobile agent technology is employed in this research for the adaptive sensing and monitoring in a wireless sensor network. Mobile agents are software components that can travel from one computing platform to another in a network and carry programs and data states that are needed for performing the assigned tasks. To support the generation, migration, communication, and management of mobile monitoring agents, an embeddable mobile agent system (Mobile-C) is integrated with sensor nodes. Mobile monitoring agents visit distributed sensor nodes, read real-time sensor data, and perform anomaly detection using the equipped pattern recognition algorithms. The optimal control of agents is achieved by mimicking the adaptive immune response and the application of multi-objective optimization algorithms. The mobile agent approach provides potential to reduce the communication load and energy consumption in monitoring networks. The major research work of this dissertation project includes: (1) studying effective feature extraction methods for time series measurement data; (2) investigating the impact of the feature extraction methods and dissimilarity measures on the performance of pattern recognition; (3) researching the effects of environmental factors on the performance of pattern recognition; (4) integrating an embeddable mobile agent system with wireless sensor nodes; (5) optimizing agent generation and distribution using artificial immune system concept and multi-objective algorithms; (6) applying mobile agent technology and pattern recognition algorithms for adaptive structural health monitoring and driving cycle pattern recognition; (7) developing a web-based monitoring network to enable the visualization and analysis of real-time sensor data remotely. Techniques and algorithms developed in this dissertation project will contribute to research advances in networked distributed systems operating under changing environments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La actividad física regular desempeña un papel fundamental en la prevención y control de los desórdenes musculo esqueléticos, dentro de la actividad laboral del profesor de educación física. Objetivo: El propósito del estudio fue determinar la relación entre los niveles de actividad física y la prevalencia de los desórdenes musculo esqueléticos, en profesores de educación física de 42 instituciones educativas oficiales de Bogotá-Colombia. Métodos. Se trata de un estudio de corte transversal en 262 profesores de educación física, de 42 instituciones educativas oficiales de Bogotá - Colombia. Se aplicó de manera auto-diligenciada el Cuestionario Nórdico de desórdenes músculos esqueléticos y el Cuestionario IPAQ versión corta para identificar los niveles de actividad física. Se obtuvieron medidas de tendencia central y de dispersión para variables cuantitativas y frecuencias relativas para variables cualitativas. Se calculó la prevalencia de vida y el porcentaje de reubicación laboral en los docentes que habían padecido diferentes tipo de dolor. Para estimar la relación entre el dolor y las variables sociodemográficas de los docentes, se utilizó un modelo de regresión logística binaria simple. Los análisis fueron realizados en SPSS versión 20 y se consideró como significativo un valor p < 0.05 para el contraste de hipótesis y un nivel de confianza para la estimación de parámetros. Resultados: El porcentaje de respuesta fue del 83.9%, se consideraron válidos 262 registros, 22.5% eran de género femenino, la mayor cantidad de docentes de educación física se encuentraon entre 25 y 35 años (43,9%), frente a los desórdenes musculo esqueléticos, el 16.9% de los profesores reporto haberlos sufrido alguna vez molestias en el cuello, el 17,2% en el hombro, 27,9% espalda, 7.93% brazo y en mano el 8.4%. Los profesores con mayores niveles de actividad física, reportaron una prevalencia menor de alteraciones musculo esqueléticas de 16,9 % para cuello; 27.7% para dorsal/lumbar frente a los sujetos con niveles bajos de actividad física. La presencia de los desórdenes se asoció a los años de experiencia (OR 3.39 IC95% 1.41-7.65), a pertenecer al género femenino (OR 4.94 IC95% 1.94-12.59), a la edad (OR 5.06 IC95% 1.25-20.59), y al atender más de 400 estudiantes a cargo dentro de la jornada laboral (OR 4.50 IC95% 1.74-11.62). Conclusiones: En los profesores de Educación Física no sé encontró una relación estadísticamente significativa entre los niveles de actividad física y los desórdenes musculo esqueléticos medidos por auto reporte.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This short paper presents a numerical method for spatial and temporal downscaling of solar global radiation and mean air temperature data from global weather forecast models and its validation. The final objective is to develop a prediction algorithm to be integrated in energy management models and forecast of energy harvesting in solar thermal systems of medium/low temperature. Initially, hourly prediction and measurement data of solar global radiation and mean air temperature were obtained, being then numerically downscaled to half-hourly prediction values for the location where measurements were taken. The differences between predictions and measurements were analyzed for more than one year of data of mean air temperature and solar global radiation on clear sky days, resulting in relative daily deviations of around -0.9±3.8% and 0.02±3.92%, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the digital age, e-health technologies play a pivotal role in the processing of medical information. As personal health data represents sensitive information concerning a data subject, enhancing data protection and security of systems and practices has become a primary concern. In recent years, there has been an increasing interest in the concept of Privacy by Design, which aims at developing a product or a service in a way that it supports privacy principles and rules. In the EU, Article 25 of the General Data Protection Regulation provides a binding obligation of implementing Data Protection by Design technical and organisational measures. This thesis explores how an e-health system could be developed and how data processing activities could be carried out to apply data protection principles and requirements from the design stage. The research attempts to bridge the gap between the legal and technical disciplines on DPbD by providing a set of guidelines for the implementation of the principle. The work is based on literature review, legal and comparative analysis, and investigation of the existing technical solutions and engineering methodologies. The work can be differentiated by theoretical and applied perspectives. First, it critically conducts a legal analysis on the principle of PbD and it studies the DPbD legal obligation and the related provisions. Later, the research contextualises the rule in the health care field by investigating the applicable legal framework for personal health data processing. Moreover, the research focuses on the US legal system by conducting a comparative analysis. Adopting an applied perspective, the research investigates the existing technical methodologies and tools to design data protection and it proposes a set of comprehensive DPbD organisational and technical guidelines for a crucial case study, that is an Electronic Health Record system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this novel experimental study is to investigate the behaviour of a 2m x 2m model of a masonry groin vault, which is built by the assembly of blocks made of a 3D-printed plastic skin filled with mortar. The choice of the groin vault is due to the large presence of this vulnerable roofing system in the historical heritage. Experimental tests on the shaking table are carried out to explore the vault response on two support boundary conditions, involving four lateral confinement modes. The data processing of markers displacement has allowed to examine the collapse mechanisms of the vault, based on the arches deformed shapes. There then follows a numerical evaluation, to provide the orders of magnitude of the displacements associated to the previous mechanisms. Given that these displacements are related to the arches shortening and elongation, the last objective is the definition of a critical elongation between two diagonal bricks and consequently of a diagonal portion. This study aims to continue the previous work and to take another step forward in the research of ground motion effects on masonry structures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the CERN LHC program underway, there has been an acceleration of data growth in the High Energy Physics (HEP) field and the usage of Machine Learning (ML) in HEP will be critical during the HL-LHC program when the data that will be produced will reach the exascale. ML techniques have been successfully used in many areas of HEP nevertheless, the development of a ML project and its implementation for production use is a highly time-consuming task and requires specific skills. Complicating this scenario is the fact that HEP data is stored in ROOT data format, which is mostly unknown outside of the HEP community. The work presented in this thesis is focused on the development of a ML as a Service (MLaaS) solution for HEP, aiming to provide a cloud service that allows HEP users to run ML pipelines via HTTP calls. These pipelines are executed by using the MLaaS4HEP framework, which allows reading data, processing data, and training ML models directly using ROOT files of arbitrary size from local or distributed data sources. Such a solution provides HEP users non-expert in ML with a tool that allows them to apply ML techniques in their analyses in a streamlined manner. Over the years the MLaaS4HEP framework has been developed, validated, and tested and new features have been added. A first MLaaS solution has been developed by automatizing the deployment of a platform equipped with the MLaaS4HEP framework. Then, a service with APIs has been developed, so that a user after being authenticated and authorized can submit MLaaS4HEP workflows producing trained ML models ready for the inference phase. A working prototype of this service is currently running on a virtual machine of INFN-Cloud and is compliant to be added to the INFN Cloud portfolio of services.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thesis represents the conclusive outcome of the European Joint Doctorate programmein Law, Science & Technology funded by the European Commission with the instrument Marie Skłodowska-Curie Innovative Training Networks actions inside of the H2020, grantagreement n. 814177. The tension between data protection and privacy from one side, and the need of granting further uses of processed personal datails is investigated, drawing the lines of the technological development of the de-anonymization/re-identification risk with an explorative survey. After acknowledging its span, it is questioned whether a certain degree of anonymity can still be granted focusing on a double perspective: an objective and a subjective perspective. The objective perspective focuses on the data processing models per se, while the subjective perspective investigates whether the distribution of roles and responsibilities among stakeholders can ensure data anonymity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis investigates the legal, ethical, technical, and psychological issues of general data processing and artificial intelligence practices and the explainability of AI systems. It consists of two main parts. In the initial section, we provide a comprehensive overview of the big data processing ecosystem and the main challenges we face today. We then evaluate the GDPR’s data privacy framework in the European Union. The Trustworthy AI Framework proposed by the EU’s High-Level Expert Group on AI (AI HLEG) is examined in detail. The ethical principles for the foundation and realization of Trustworthy AI are analyzed along with the assessment list prepared by the AI HLEG. Then, we list the main big data challenges the European researchers and institutions identified and provide a literature review on the technical and organizational measures to address these challenges. A quantitative analysis is conducted on the identified big data challenges and the measures to address them, which leads to practical recommendations for better data processing and AI practices in the EU. In the subsequent part, we concentrate on the explainability of AI systems. We clarify the terminology and list the goals aimed at the explainability of AI systems. We identify the reasons for the explainability-accuracy trade-off and how we can address it. We conduct a comparative cognitive analysis between human reasoning and machine-generated explanations with the aim of understanding how explainable AI can contribute to human reasoning. We then focus on the technical and legal responses to remedy the explainability problem. In this part, GDPR’s right to explanation framework and safeguards are analyzed in-depth with their contribution to the realization of Trustworthy AI. Then, we analyze the explanation techniques applicable at different stages of machine learning and propose several recommendations in chronological order to develop GDPR-compliant and Trustworthy XAI systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A method using the ring-oven technique for pre-concentration in filter paper discs and near infrared hyperspectral imaging is proposed to identify four detergent and dispersant additives, and to determine their concentration in gasoline. Different approaches were used to select the best image data processing in order to gather the relevant spectral information. This was attained by selecting the pixels of the region of interest (ROI), using a pre-calculated threshold value of the PCA scores arranged as histograms, to select the spectra set; summing up the selected spectra to achieve representativeness; and compensating for the superimposed filter paper spectral information, also supported by scores histograms for each individual sample. The best classification model was achieved using linear discriminant analysis and genetic algorithm (LDA/GA), whose correct classification rate in the external validation set was 92%. Previous classification of the type of additive present in the gasoline is necessary to define the PLS model required for its quantitative determination. Considering that two of the additives studied present high spectral similarity, a PLS regression model was constructed to predict their content in gasoline, while two additional models were used for the remaining additives. The results for the external validation of these regression models showed a mean percentage error of prediction varying from 5 to 15%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, we discuss the use of multi-way principal component analysis combined with comprehensive two-dimensional gas chromatography to study the volatile metabolites of the saprophytic fungus Memnoniella sp. isolated in vivo by headspace solid-phase microextraction. This fungus has been identified as having the ability to induce plant resistance against pathogens, possibly through its volatile metabolites. Adequate culture media was inoculated, and its headspace was then sampled with a solid-phase microextraction fiber and chromatographed every 24 h over seven days. The raw chromatogram processing using multi-way principal component analysis allowed the determination of the inoculation period, during which the concentration of volatile metabolites was maximized, as well as the discrimination of the appropriate peaks from the complex culture media background. Several volatile metabolites not previously described in the literature on biocontrol fungi were observed, as well as sesquiterpenes and aliphatic alcohols. These results stress that, due to the complexity of multidimensional chromatographic data, multivariate tools might be mandatory even for apparently trivial tasks, such as the determination of the temporal profile of metabolite production and extinction. However, when compared with conventional gas chromatography, the complex data processing yields a considerable improvement in the information obtained from the samples. This article is protected by copyright. All rights reserved.