918 resultados para In situ degradability
Resumo:
In situ fusion on the boat-type graphite platform has been used as a sample pretreatment for the direct determination of Co, Cr and Mn in Portland cement by solid sampling graphite furnace atomic absorption spectrometry (SS-GF AAS). The 3-field Zeeman technique was adopted for background correction to decrease the sensitivity during measurements. This strategy allowed working with up to 200 mu g of sample. The in situ fusion was accomplished using 10 mu L of a flux mixture 4.0% m/v Na(2)CO(3) + 4.0% m/v ZnO + 0.1% m/v Triton (R) X-100 added over the cement sample and heated at 800 degrees C for 20 s. The resulting mould was completely dissolved with 10 mu L of 0.1% m/v HNO(3). Limits of detection were 0.11 mu g g(-1) for Co, 1.1 mu g g(-1) for Cr and 1.9 mu g g(-1) for Mn. The accuracy of the proposed method has been evaluated by the analysis of certified reference materials. The values found presented no statistically significant differences compared to the certified values (Student`s t-test, p<0.05). In general, the relative standard deviation was lower than 12% (n = 5). (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
n-Butanethiol is generated in situ by sequential addition of n-butyllithium and water to elemental sulfur. The n-butanethiol formed was reacted with electron-deficient olefines to give Michael-type addition products in good yields. The method avoids the manipulation of the bad-smelling n-butanethiol.
Resumo:
Purpose: The aim of this in situ double-blind randomised crossover study was to investigate the effect of calcium (Ca) pre-rinse on the composition of plaque and on enamel prior to the use of fluoride (F) dentifrice. Materials and Methods: During four phases (14 days each) of this study, 10 volunteers had agreed to wear dental appliances containing two healthy bovine enamel blocks. A fresh solution containing 20% weight/volume (w/v) sucrose was dripped on the enamel blocks ex vivo for 5 min three times a day. Subsequently, the appliances were replaced in the mouth, and the volunteers rinsed their mouth with 10 mL of a Ca (150 mmol/L) or a placebo rinse (1 min). In sequence, a slurry (1:3 w/v) of F (1030 ppm) or placebo dentifrice was dripped onto the blocks ex vivo for 1 min. During this time, the volunteers brushed their teeth with the respective dentifrice. The appliances were replaced in the mouth, and the volunteers rinsed their mouth with water. The plaque formed on the blocks was analysed for F and Ca. The enamel demineralisation as well as the incorporation of F on enamel was evaluated by cross-sectional microhardness and alkali-soluble F analysis, respectively. Data were tested using analysis of variance (P < 0.05). Results: The Ca pre-rinse prior to the use of the F dentifrice led to a three- and sixfold increase in the plaque F and Ca concentrations, respectively. It also did not have any additive effect on the F content on the enamel and the demineralisation of the enamel, in comparison with the use of F dentifrice alone. Conclusions: A Ca lactate rinse used prior to the F dentifrice was able to change the mineral content in the plaque, but it was unable to prevent enamel demineralisation.
Resumo:
The ethanol oxidation reaction (EOR) was investigated using PtSnCe/C electrocatalysts in different mass ratios (72:23:5, 68:22:10 and 64:21:15) that were prepared by the polymeric precursor method. Transmission electron microscopy (TEM) showed that the particles ranged in size from approximately 2 to 5 nm. Changes in the net parameters observed for Pt suggest the incorporation of Sn and Ce into the Pt crystalline network with the formation of an alloy between Pt, Sn and/or Ce. Among the PtSnCe catalysts investigated, the 68:22:10 composition showed the highest activity toward ethanol oxidation, and the current time curves obtained in the presence of ethanol in acidic media showed a current density 50% higher than that observed for commercial PtSn/C (E-Tek). During the experiments performed on single direct ethanol fuel cells, the power density for the PtSnCe/C 68:22:10 anode was nearly 40% higher than the one obtained using the commercial catalyst. Data from Fourier transform infrared (FTIR) spectroscopy showed that the observed behavior for ethanol oxidation may be explained in terms of a double mechanism. The presence of Sn and Ce seems to favor CO oxidation, since they produce an oxygen-containing species to oxidize acetaldehyde to acetic acid. Copyright (C) 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
Resumo:
Although Pt has been thoroughly studied regarding its activity for the borohydride oxidation reaction (BOR), the BOR mechanism at Pt remains unclear: Depending on the applied potential, spontaneous BH(4)(-) hydrolysis can compete with the direct BOR. The goal of the present work is to provide more insight into the behavior of smooth Pt electrodes toward the BOR, by coupling in situ infrared reflectance spectroscopy with electrochemistry. The measurements were performed on a Pt electrode in 1 M NaOH/1 M NaBH(4), so as to detect the reaction intermediate species generated as a function of the applied potential. Several bands were monitored in the B-H ((v) over bar approximate to 1180, 1080, and 972 cm(-1)) and B-O ((v) over bar = 1325 and similar to 1425 cm(-1)) bond regions upon increased electrode polarization. These absorption bands, which appear sequentially and were already detected for similar measurements on Au electrodes, are assigned to BH(3), BH(2), and BO(2)(-) species. In light of these experimental data and previous results obtained in our group for Pt- or Au-based electrodes, possible initial elementary steps of the BOR on platinum electrodes are proposed and discussed according to the relevant literature data.
Resumo:
O experimento realizado avaliou, através de incubações ruminais de um volumoso misturado a diferentes concentrados, a ocorrência de influência mútua entre esses alimentos. Foi utilizado um animal Hereford fistulado no rúmen, em três períodos experimentais e foram incubados, por 24 horas, os seguintes ingredientes: farelo de soja, farelo de arroz integral, milho integral moído misturados com volumoso (feno de capim coast-cross) nas seguintes proporções de concentrado: 100, 50, 40, 30, 20 e 0%. Foi estudada a degradação da MS e da FDN das misturas, através do desaparecimento de amostra e da análise dos resíduos e amostras. Ao comparar-se as medidas obtidas com as estimadas através do cálculo proporcional das degradabilidades individuais dos ingredientes não se obteve diferença significativa entre a degradabilidade obtida e estimada da MS de nenhum dos alimentos em nenhuma das proporções A mesma comparação realizada com a FDN mostrou algumas diferenças numéricas entre as medidas observadas e estimadas nas misturas de feno + farelo de soja e feno + milho moído. No entanto, esses resultados não foram estatisticamente significativos (P>0,05) possivelmente pela alta variabilidade da técnica em relação ao pequeno numero de repetições testadas. O farelo de arroz utilizado nesse experimento apresentou características muito próximas às encontradas no feno e por isso não houve diferença significativa entre as degradabilidades obtida e estimada na mistura de farelo de arroz com o feno. A técnica “in situ”, da forma como a metodologia foi testada, não foi capaz de mostrar benefícios ou prejuízos estatisticamente significativos a degradação da MS e FDN dos alimentos misturados.
Resumo:
O presente estudo teve por objetivo avaliar se a aplicação tópica de flúor fosfato acidulado (FFA) em alta concentração tem efeito adicional no controle de lesões de esmalte, comparado ao uso de dentifrício fluoretado (baixa concentração). A freqüência de FFA como auxiliar no tratamento de lesões de cárie e a deposição de flúor no esmalte após diferentes aplicações de flúor am alta e baixa concentração também foram avaliadas. Para tanto, 5 indivíduos utilizaram, por 42 dias, próteses parciais removíveis inferiores contendo blocos de esmalte bovino desmineralizados. Os espécimes de esmalte forma divididos em 5 grupos: (1) escovação 3 vezes ao dia com dentifrício fluoretado (DF) (1100 ppm F), (2) DF+1 aplicação tópica FFA (12300 ppm F), (3) DF+2 FFA, (4) DF+3 FFA, e 5) DF+4 FFA. O intervalo entre as aplicações foi de uma semana. Cinco blocos hígidos e 5 blocos desmineralizados foram utilizados como controle e não foram submetidos ao período intraoral. As alterações clínicas foram registradas com relação à textura, coloração e brilho superficiais. Análises de microdureza superficial (MS) e em cortes longitudinais (MCL), de rugosidade superficial (RS) e de conteúdo de flúor depositado no esmalte foram realizadas. Modificações clínicas semelhantes de coloração foram observadas em todos os grupos após formação da lesão in vitro, apesar da ausência de mudanças na textura e brilho superficiais. Após escovação e tratamento com flúor, todos os blocos desmineralizados (esbranquiçados), independentemente do tratamento, tornaram-se mais amarelados. Não foram detectadas mudanças na textura e brilho superficiais. Os valores de MS e de conteúdo de flúor aumentaram (p<0,05) em relação aos blocos demineralizados somente a partir de 2 FFA. Os valores de MCL não mostraram diferenças entre os blocos tratados e os desmineralizados em qualquer distância da superfície do esmalte. Os grupos DF+3 FFA e DF+ 4 FFA foram os únicos capazes de aumentar os valores de MS em relação aos blocos desmineralizados. Estes tratamentos levaram a um aumento significativo de flúor solúvel e insolúvel comparado aos espécimes hígidos e desmineralizados. Ainda que todas as lesões tenham sido controladas clinicamente e não mostrem diferenças de microdureza, parece que aquelas tratadas com maior número de FFA produziram um maior reservatório de flúor disponível para inibir novos processos de desmineralização.
Resumo:
Evidências na literatura sugerem que a velocidade de progressão de cárie pode ser influenciada por diversos fatores, entre eles as peculiaridades químicas, morfológicas e fisiológicas pertinentes aos dentes decíduos e permanentes. Estas informações são fundamentais para a correta abordagem clínica do paciente odontopediátrico, principalmente quando esta não for invasiva. Este estudo in situ avaliou a progressão de lesões cariosas em esmalte de dentes decíduos e permanentes, em um mesmo desenho experimental, na presença e na ausência de dentifrício fluoretado (1100 ppm NaF). Onze voluntários, em duas fases distintas, utilizaram um dispositivo palatino de acrílico contendo blocos de esmalte decíduos e permanentes. Estes blocos foram tratados com sacarose 20%, 8x/dia, por 7, 14 e 21 dias. O biofilme formado sobre os blocos dentários foi coletado para análise bioquímica e as perdas minerais dos mesmos foram acessadas através da inspeção visual (IV), microdureza transversa (∆Z) e microscopia de luz polarizada (MLP). Os resultados foram submetidos ao teste de Tukey (p=0,05) e mostraram que o biofilme formado na presença de dentifrício fluoretado apresentou maiores (p<0,05) concentrações de Ca, Pi, F que o tratado com dentifrício placebo. A concentração de PI foi significativamente maior no biofilme tratado com dentifrício placebo. Os fatores substrato, dentifrício e tempo influenciaram de forma significativa nas perdas minerais mensuradas através da IV, ∆Z e MLP. Em todos os períodos e fases estudadas, a velocidade de progressão de cárie no esmalte do dente decíduo foi maior que no permanente (p<0,05).
Resumo:
Os catalisadores metalocênicos Me2Si(Ind)2ZrCl2 e Me2Si(2-Me-Ind)2ZrCl2 foram suportados in-situ sobre SMAO e empregados na polimerização de propeno na presença de alquilalumínios tais como TEA, IPRA ou TIBA. Os resultados obtidos demonstraram que o tipo e a concentração de alquilalumínio presente no meio reacional influenciaram tanto a atividade catalítica quanto as propriedades dos polímeros gerados. Os polímeros obtidos com o catalisador suportado in-situ apresentaram propriedades distintas das obtidas no polímero gerado através da polimerização homogênea, além de morfologia controlada, confirmando que de fato a polimerização ocorreu sobre a superfície do SMAO. Através da deconvolução das curvas de GPC foi constatado o aumento do número de tipos de sítios ativos no sistema catalítico suportado in-situ, resultado que também confirmou a heterogeneização do catalisador sobre o suporte. Com o auxílio de cálculos teóricos e da deconvolução das curvas de GPC foi possível propor estruturas para os sítios ativos dos sistemas homogêneo metaloceno/MAO e heterogêneo (suportado in-situ) metaloceno/SMAO/alquilalumínio. Quando eteno foi utilizado como monômero, o comportamento do sistema catalítico metaloceno/SMAO/alquilalumínio suportado in-situ foi distinto do obtido com propeno. O catalisador Me2Si(Ind)2ZrCl2 suportado ex-situ sobre SMAO através de técnicas convencionais de suportação foi avaliado por EXAFS e foi constatado que a vizinhança eletrônica do zircônio é influenciada pela razão Zr/SMAO. Os resultados obtidos por EXAFS foram correlacionados com a variação na atividade catalítica na polimerização de eteno em função da alteração na razão Zr/SMAO.
Resumo:
Bacterial cellulose/polymethacrylate nanocomposites have received attention in numerous areas of study and in a variety of applications. The attractive properties of methacrylate polymers and bacterial cellulose, BC, allow the synthesis of new nanocomposites with distinct characteristics. In this study, BC/poly(glycidylmethacrylate) (BC/PGMA) and BC/poly(ethyleneglycol)methacrylate (BC/PPEGMA) nanocomposites were prepared through in situ free radical polymerization of GMA and PEGMA, respectively. Ammonium persulphate (APS) was used as an initiator and N,N’methylenebisacrilamide (MBA) was used as a crosslinker in BC/PGMA. Chemical composition, morphology, thermal stability, water absorption, mechanic and surface properties were determined through specific characterization techniques. The optimal polymerization was obtained at (1:2) for BC/PGMA, (1:2:0.2) ratio for BC/GMA/MBA and (1:20) for BC/PPEGMA, with 0.5% of initiator at 60 ºC during 6 h. A maximum of 67% and 87% of incorporation percentage was obtained, respectively, for the nanocomposites BC/PGMA/MBA and BC/PPEGMA. BC/PGMA nanocomposites exhibited an increase of roughness and compactation of the three-dimensional structure, an improvement in the thermal and mechanical properties, and a decrease in their swelling ability and crystallinity. On the other hand, BC/PPEGMA showed a decrease of stiffness of three-dimensional structure, improvement in thermal and mechanical properties, an increase in their swelling ability and a decrease the crystallinity. Both BC/polymethacrylate nanocomposites exhibited a basic surface character. The acid treatment showed to be a suitable strategy to modifiy BC/PGMA nanocomposites through epoxide ring-opening reaction mechanism. Nanocomposites became more compact, smooth and with more water retention ability. A decrease in the thermal and mechanical proprieties was observed. The new nanocomposites acquired properties useful to biomedical applications or/and removal of heavy metals due to the presence of functional groups.
Resumo:
The technique of surface coating using magnetron sputtering is one of the most widely used in the surface engineering, for its versatility in obtaining different films as well as in the micro / nanometric thickness control. Among the various process parameters, those related to the active species of the plasma are of the most fundamental importance in the mechanism and kinetics of deposition. In order to identify the active species of the plasma, parameters such as gas flow, pressure and density of electric power were varied during titanium coating on glass substrate. By flowing argon gas of 10, 20, 30, 40 and 50 sccm (cubic centimeters per minute) for each gas flow a sequential scan of the electric current of 0.10, 0.20, 0.30, 0.40 , 0.50 A. The maximum value of 0.50 A was chosen based both on literature data and on limitations of the equipment. The monitoring of plasma species present during the deposition was carried out in situ by the technique of optical emission spectroscopy (OES) through the spectrometer Ocean Optics USB2000 Series. For this purpose, an apparatus was developed to adapt the OES inside the plasma reactor to stay positioned closest to the target. The radiations emitted by the species were detected by an optical fiber placed behind the glass substrate and their intensities as a function of wavelength were, displayed on a monitor screen. The acquisition time for each condition of the plain parameters was related to the minima of spectral lines intensities due to the film formed on the substrate. The intensities of different emission lines of argon and titanium were then analyzed as a function of time, to determine the active species and estimate the thickness of the deposited films. After the deposition, the coated glasses thin films were characterized by optical transmittance through an infrared laser. It was found that the thickness and deposition rate determined by in situ analysis were consistent with the results obtained by laser transmittance
Resumo:
The method "toe-to-heel air injection" (THAITM) is a process of enhanced oil recovery, which is the integration of in-situ combustion with technological advances in drilling horizontal wells. This method uses horizontal wells as producers of oil, keeping vertical injection wells to inject air. This process has not yet been applied in Brazil, making it necessary, evaluation of these new technologies applied to local realities, therefore, this study aimed to perform a parametric study of the combustion process with in-situ oil production in horizontal wells, using a semi synthetic reservoir, with characteristics of the Brazilian Northeast basin. The simulations were performed in a commercial software "STARS" (Steam, Thermal, and Advanced Processes Reservoir Simulator), from CMG (Computer Modelling Group). The following operating parameters were analyzed: air rate, configuration of producer wells and oxygen concentration. A sensitivity study on cumulative oil (Np) was performed with the technique of experimental design, with a mixed model of two and three levels (32x22), a total of 36 runs. Also, it was done a technical economic estimative for each model of fluid. The results showed that injection rate was the most influence parameter on oil recovery, for both studied models, well arrangement depends on fluid model, and oxygen concentration favors recovery oil. The process can be profitable depends on air rate
Resumo:
Nearly 3 x 1011 m3 of medium and light oils will remain in reservoirs worldwide after conventional recovery methods have been exhausted and much of this volume would be recovered by Enhanced Oil Recovery (EOR) methods. The in-situ combustion (ISC) is an EOR method in which an oxygen-containing gas is injected into a reservoir where it reacts with the crude oil to create a high-temperature combustion front that is propagated through the reservoir. The High Pressure Air Injection (HPAI) method is a particular denomination of the air injection process applied in light oil reservoirs, for which the combustion reactions are dominant between 150 and 300°C and the generation of flue gas is the main factor to the oil displacement. A simulation model of a homogeneous reservoir was built to study, which was initially undergone to primary production, for 3 years, next by a waterflooding process for 21 more years. At this point, with the mature condition established into the reservoir, three variations of this model were selected, according to the recovery factors (RF) reached, for study the in-situ combustion (HPAI) technique. Next to this, a sensitivity analysis on the RF of characteristic operational parameters of the method was carried out: air injection rate per well, oxygen concentration into the injected gas, patterns of air injection and wells perforations configuration. This analysis, for 10 more years of production time, was performed with assistance of the central composite design. The reservoir behavior and the impacts of chemical reactions parameters and of reservoir particularities on the RF were also evaluated. An economic analysis and a study to maximize the RF of the process were also carried out. The simulation runs were performed in the simulator of thermal processes in reservoirs STARS (Steam, Thermal, and Advanced Processes Reservoir Simulator) from CMG (Computer Modelling Group). The results showed the incremental RF were small and the net present value (NPV) is affected by high initial investments to compress the air. It was noticed that the adoption of high oxygen concentration into the injected gas and of the five spot pattern tends to improve the RF, and the wells perforations configuration has more influence with the increase of the oil thickness. Simulated cases relating to the reservoir particularities showed that smaller residual oil saturations to gas lead to greater RF and the presence of heterogeneities results in important variations on the RF and on the production curves
Resumo:
The occurrence of heavy oil reservoirs have increased substantially and, due to the high viscosity characteristic of this type of oil, conventional recovery methods can not be applied. Thermal methods have been studied for the recovery of this type of oil, with a main objective to reduce its viscosity, by increasing the reservoir temperature, favoring the mobility of the oil and allowing an increasing in the productivity rate of the fields. In situ combustion (ISC) is a thermal recovery method in which heat is produced inside the reservoir by the combustion of part of the oil with injected oxygen, contrasting with the injection of fluid that is heated in the surface for subsequent injection, which leads to loss heat during the trajectory to the reservoir. The ISC is a favorable method for recovery of heavy oil, but it is still difficult to be field implemented. This work had as an objective the parametric analysis of ISC process applied to a semi-synthetic reservoir with characteristics of the Brazilian Northeast reservoirs using vertical production and vertical injection wells, as the air flow injection and the wells completions. For the analysis, was used a commercial program for simulation of oil reservoirs using thermal processes, called Steam, Thermal and Advanced Processes Reservoir Simulator (STARS) from Computer Modelling Group (CMG). From the results it was possible to analyze the efficiency of the ISC process in heavy oil reservoirs by increasing the reservoir temperature, providing a large decrease in oil viscosity, increasing its mobility inside the reservoir, as well as the improvement in the quality of this oil and therefore increasing significantly its recovered fraction. Among the analyzed parameters, the flow rate of air injection was the one which had greater influence in ISC, obtaining higher recovery factor the higher is the flow rate of injection, due to the greater amount of oxygen while ensuring the maintenance of the combustion front