912 resultados para Impurity tests
Resumo:
Weltweit existiert keine zum Tierversuch alternative Methode, um adsorbierte Pertussis-Impfstoffe auf restliche Toxin-Aktivität hin zu untersuchen. Der im Europäischen Arzneibuch vorgeschriebene Tierversuch besitzt nach Erfahrungen der Industrie, internationaler Prüfbehörden sowie des Paul-Ehrlich-Institutes eine schlechte Aussagekraft. Er ist wenig standardisierbar und weist häufig ein zweifelhaftes Ergebnis auf, so dass Wiederholungen und damit einhergehend ein hoher Verbrauch an Versuchstieren unumgänglich sind. Enthält der Impfstoff Reste von nicht-inaktiviertem Pertussis-Toxin (PTx), muss mit schweren und schwersten Nebenwirkungen bei den Impflingen gerechnet werden. In dieser Arbeit wurde ein In vitro-Nachweis für aktives PTx entwickelt. rnAngeregt durch Publikationen, wonach Pertussis-Toxin humane Monozyten aktiviert, wurde zunächst versucht, diesen Effekt zum Toxin-Nachweis auszunutzen. Die vorliegende Arbeit zeigt jedoch eindeutig, dass Pertussis-Toxin selbst nicht zur Stimulation humaner Monozyten führt. Vielmehr konnte nachgewiesen werden, dass die Aktivierung dieser Immunzellen auf Kontaminationen durch Lipopolysaccharide zurückzuführen ist. Damit wurden die Aussagen in den oben erwähnten Veröffentlichungen widerlegt. Dieses Ergebnis wurde bereits zur Publikation eingereicht.rnNunmehr wurden verschiedene Ansätze zum Nachweis von Pertussis-Toxin entwickelt, welche seine enzymatischen Aktivitäten als NAD-Glycohydrolase und ADP-Ribosyltransferase ausnutzen. Zunächst wurde versucht, die Hydrolyse von NAD zu ADP-Ribose und Nicotinamid photometrisch nachzuweisen. Wegen unbefriedigender Sensitivität wurde dieses Verfahren zu einem fluorometrischen Nachweis weiterentwickelt. Verwendet wurde hier fluorogenes etheno-NAD, welches von Pertussis-Toxin als Substrat akzeptiert wird. Letzteres Prinzip ist zum In vitro-Nachweis von Pertussis-Toxin geeignet, wird jedoch durch das in Impfstoffen häufig verwendete Adsorbens Aluminiumhydroxid gestört. Deshalb wurde dieser Ansatz aufgegeben und ein neuer Weg verfolgt, welcher am Energiestoffwechsel von humanen Zellen ansetzt. Eine Konsequenz des Angriffs von Pertussis-Toxin auf seine Zielzellen im Respirationstrakt besteht – nach komplexen Reaktionen des Signaltransduktionsweges – im Absenken des ATP-Gehaltes. Als menschliche Surrogat-Zellen wurden frisch isolierte periphere mononukleäre Zellen (PBMCs) sowie die permanente Lymphozyten-Zelllinie Jurkat eingesetzt und deren ATP-Gehalt mittels Luziferin-Luziferase-Lumineszenz gemessen. Der Test wird nicht durch Lipopolysaccharid gestört und auch Aluminiumhydroxid übt erst nach mehreren Stunden Inkubation einen interferierenden Einfluss aus. Ebenso konnte aktives Pertussis-Toxin mit Hilfe kryokonservierter PBMCs detektiert werden, auch in orientierenden Versuchen mit komplexen Impfstoffen. Der Pertussis-ATP-Test kommt der In vivo-Situation in der Zelle sehr nahe, weil beide Untereinheiten des Toxins in einem Test überprüft werden. Demnach soll er Bestandteil einer geplanten internationalen Studie zu alternativen Pertussis-Toxin-Testungen sein.
Resumo:
The thesis work concerns X-ray spectrometry for both medical and space applications and is divided into two sections. The first section addresses an X-ray spectrometric system designed to study radiological beams and is devoted to the optimization of diagnostic procedures in medicine. A parametric semi-empirical model capable of efficiently reconstructing diagnostic X-ray spectra in 'middle power' computers was developed and tested. In addition, different silicon diode detectors were tested as real-time detectors in order to provide a real-time evaluation of the spectrum during diagnostic procedures. This project contributes to the field by presenting an improved simulation of a realistic X-ray beam emerging from a common X-ray tube with a complete and detailed spectrum that lends itself to further studies of added filtration, thus providing an optimized beam for different diagnostic applications in medicine. The second section describes the preliminary tests that have been carried out on the first version of an Application Specific Integrated Circuit (ASIC), integrated with large area position-sensitive Silicon Drift Detector (SDD) to be used on board future space missions. This technology has been developed for the ESA project: LOFT (Large Observatory for X-ray Timing), a new medium-class space mission that the European Space Agency has been assessing since February of 2011. The LOFT project was proposed as part of the Cosmic Vision Program (2015-2025).
Resumo:
In this thesis, the phenomenology of the Randall-Sundrum setup is investigated. In this context models with and without an enlarged SU(2)_L x SU(2)_R x U(1)_X x P_{LR} gauge symmetry, which removes corrections to the T parameter and to the Z b_L \bar b_L coupling, are compared with each other. The Kaluza-Klein decomposition is formulated within the mass basis, which allows for a clear understanding of various model-specific features. A complete discussion of tree-level flavor-changing effects is presented. Exact expressions for five dimensional propagators are derived, including Yukawa interactions that mediate flavor-off-diagonal transitions. The symmetry that reduces the corrections to the left-handed Z b \bar b coupling is analyzed in detail. In the literature, Randall-Sundrum models have been used to address the measured anomaly in the t \bar t forward-backward asymmetry. However, it will be shown that this is not possible within a natural approach to flavor. The rare decays t \to cZ and t \to ch are investigated, where in particular the latter could be observed at the LHC. A calculation of \Gamma_{12}^{B_s} in the presence of new physics is presented. It is shown that the Randall-Sundrum setup allows for an improved agreement with measurements of A_{SL}^s, S_{\psi\phi}, and \Delta\Gamma_s. For the first time, a complete one-loop calculation of all relevant Higgs-boson production and decay channels in the custodial Randall-Sundrum setup is performed, revealing a sensitivity to large new-physics scales at the LHC.
Resumo:
The cone penetration test (CPT), together with its recent variation (CPTU), has become the most widely used in-situ testing technique for soil profiling and geotechnical characterization. The knowledge gained over the last decades on the interpretation procedures in sands and clays is certainly wide, whilst very few contributions can be found as regards the analysis of CPT(u) data in intermediate soils. Indeed, it is widely accepted that at the standard rate of penetration (v = 20 mm/s), drained penetration occurs in sands while undrained penetration occurs in clays. However, a problem arise when the available interpretation approaches are applied to cone measurements in silts, sandy silts, silty or clayey sands, since such intermediate geomaterials are often characterized by permeability values within the range in which partial drainage is very likely to occur. Hence, the application of the available and well-established interpretation procedures, developed for ‘standard’ clays and sands, may result in invalid estimates of soil parameters. This study aims at providing a better understanding on the interpretation of CPTU data in natural sand and silt mixtures, by taking into account two main aspects, as specified below: 1)Investigating the effect of penetration rate on piezocone measurements, with the aim of identifying drainage conditions when cone penetration is performed at a standard rate. This part of the thesis has been carried out with reference to a specific CPTU database recently collected in a liquefaction-prone area (Emilia-Romagna Region, Italy). 2)Providing a better insight into the interpretation of piezocone tests in the widely studied silty sediments of the Venetian lagoon (Italy). Research has focused on the calibration and verification of some site-specific correlations, with special reference to the estimate of compressibility parameters for the assessment of long-term settlements of the Venetian coastal defences.
Resumo:
A highly dangerous situations for tractor driver is the lateral rollover in operating conditions. Several accidents, involving tractor rollover, have indeed been encountered, requiring the design of a robust Roll-Over Protective Structure (ROPS). The aim of the thesis was to evaluate tractor behaviour in the rollover phase so as to calculate the energy absorbed by the ROPS to ensure driver safety. A Mathematical Model representing the behaviour of a generic tractor during a lateral rollover, with the possibility of modifying the geometry, the inertia of the tractor and the environmental boundary conditions, is proposed. The purpose is to define a method allowing the prediction of the elasto-plastic behaviour of the subsequent impacts occurring in the rollover phase. A tyre impact model capable of analysing the influence of the wheels on the energy to be absorbed by the ROPS has been also developed. Different tractor design parameters affecting the rollover behaviour, such as mass and dimensions, have been considered. This permitted the evaluation of their influence on the amount of energy to be absorbed by the ROPS. The mathematical model was designed and calibrated with respect to the results of actual lateral upset tests carried out on a narrow-track tractor. The dynamic behaviour of the tractor and the energy absorbed by the ROPS, obtained from the actual tests, showed to match the results of the model developed. The proposed approach represents a valuable tool in understanding the dynamics (kinetic energy) and kinematics (position, velocity, angular velocity, etc.) of the tractor in the phases of lateral rollover and the factors mainly affecting the event. The prediction of the amount of energy to be absorbed in some cases of accident is possible with good accuracy. It can then help in designing protective structures or active security devices.
Resumo:
Environmental decay in porous masonry materials, such as brick and mortar, is a widespread problem concerning both new and historic masonry structures. The decay mechanisms are quite complex dependng upon several interconnected parameters and from the interaction with the specific micro-climate. Materials undergo aesthetical and substantial changes in character but while many studies have been carried out, the mechanical aspect has been largely understudied while it bears true importance from the structural viewpoint. A quantitative assessment of the masonry material degradation and how it affects the load-bearing capacity of masonry structures appears missing. The research work carried out, limiting the attention to brick masonry addresses this issue through an experimental laboratory approach via different integrated testing procedures, both non-destructive and mechanical, together with monitoring methods. Attention was focused on transport of moisture and salts and on the damaging effects caused by the crystallization of two different salts, sodium chloride and sodium sulphate. Many series of masonry specimens, very different in size and purposes were used to track the damage process since its beginning and to monitor its evolution over a number of years Athe same time suitable testing techniques, non-destructive, mini-invasive, analytical, of monitoring, were validated for these purposes. The specimens were exposed to different aggressive agents (in terms of type of salt, of brine concentration, of artificial vs. open-air natural ageing, …), tested by different means (qualitative vs. quantitative, non destructive vs. mechanical testing, punctual vs. wide areas, …), and had different size (1-, 2-, 3-header thick walls, full-scale walls vs. small size specimens, brick columns and triplets vs. small walls, masonry specimens vs. single units of brick and mortar prisms, …). Different advanced testing methods and novel monitoring techniques were applied in an integrated holistic approach, for quantitative assessment of masonry health state.
Towards the 3D attenuation imaging of active volcanoes: methods and tests on real and simulated data
Resumo:
The purpose of my PhD thesis has been to face the issue of retrieving a three dimensional attenuation model in volcanic areas. To this purpose, I first elaborated a robust strategy for the analysis of seismic data. This was done by performing several synthetic tests to assess the applicability of spectral ratio method to our purposes. The results of the tests allowed us to conclude that: 1) spectral ratio method gives reliable differential attenuation (dt*) measurements in smooth velocity models; 2) short signal time window has to be chosen to perform spectral analysis; 3) the frequency range over which to compute spectral ratios greatly affects dt* measurements. Furthermore, a refined approach for the application of spectral ratio method has been developed and tested. Through this procedure, the effects caused by heterogeneities of propagation medium on the seismic signals may be removed. The tested data analysis technique was applied to the real active seismic SERAPIS database. It provided a dataset of dt* measurements which was used to obtain a three dimensional attenuation model of the shallowest part of Campi Flegrei caldera. Then, a linearized, iterative, damped attenuation tomography technique has been tested and applied to the selected dataset. The tomography, with a resolution of 0.5 km in the horizontal directions and 0.25 km in the vertical direction, allowed to image important features in the off-shore part of Campi Flegrei caldera. High QP bodies are immersed in a high attenuation body (Qp=30). The latter is well correlated with low Vp and high Vp/Vs values and it is interpreted as a saturated marine and volcanic sediments layer. High Qp anomalies, instead, are interpreted as the effects either of cooled lava bodies or of a CO2 reservoir. A pseudo-circular high Qp anomaly was detected and interpreted as the buried rim of NYT caldera.
Resumo:
Die oberflächennahe Geothermie leistet im Bereich der Nutzung regenerativer Wärme einen wichtigen Beitrag zum Klima- und Umweltschutz. Um die technische Nutzung oberflächennaher Geothermie zu optimieren, ist die Kenntnis der Beschaffenheit des geologischen Untergrundes ausschlaggebend. Die vorliegende Dissertation befasst sich mit der Bestimmung verschiedener Untergrundparameter an einem Erdwärmesondenfeld. Es wurden Untersuchungen zur Bestimmung der Wärmeleitfähigkeit wie der enhanced Thermal Response Test (eTRT), sowie eine Untergrund-Temperaturüberwachung im ersten Betriebsjahr durchgeführt. Die Überwachung zeigte keine gegenseitige Beeinflussung einzelner Sonden. Ein Vergleich zwischen dem geplanten und dem tatsächlichem Wärmebedarf des ersten Betriebsjahres ergab eine Abweichung von ca. 35%. Dies zeigt, dass die Nutzungsparameter der Anlage deren Effizienz maßgeblich beeinflussen können. Der am Beispielobjekt praktisch durchgeführte eTRT wurde mittels numerischer Modellierung auf seine Reproduzierbarkeit hin überprüft. Bei einem rein konduktiven Wärmetransport im Untergrund betrug die maximale Abweichung der Messung selbst unter ungünstigen Bedingungen lediglich ca. 6% vom zu erwartenden Wert. Die Detektion von grundwasserdurchflossenen Schichten ist in den Modellen ebenfalls gut abbildbar. Problematisch bleibt die hohe Abhängigkeit des Tests von einer konstanten Wärmezufuhr. Lediglich die Bestimmung der Wärmeleitfähigkeit über das Relaxationsverhalten des Untergrundes liefert bei Wärmeeintragsschwankungen hinreichend genaue Ergebnisse. Die mathematische Nachbearbeitung von fehlerhaften Temperaturkurven bietet einen Einstiegspunkt für weiterführende Forschung.
Resumo:
In dentistry the restoration of decayed teeth is challenging and makes great demands on both the dentist and the materials. Hence, fiber-reinforced posts have been introduced. The effects of different variables on the ultimate load on teeth restored using fiber-reinforced posts is controversial, maybe because the results are mostly based on non-standardized in vitro tests and, therefore, give inhomogeneous results. This study combines the advantages of in vitro tests and finite element analysis (FEA) to clarify the effects of ferrule height, post length and cementation technique used for restoration. Sixty-four single rooted premolars were decoronated (ferrule height 1 or 2 mm), endodontically treated and restored using fiber posts (length 2 or 7 mm), composite fillings and metal crowns (resin bonded or cemented). After thermocycling and chewing simulation the samples were loaded until fracture, recording first damage events. Using UNIANOVA to analyze recorded fracture loads, ferrule height and cementation technique were found to be significant, i.e. increased ferrule height and resin bonding of the crown resulted in higher fracture loads. Post length had no significant effect. All conventionally cemented crowns with a 1-mm ferrule height failed during artificial ageing, in contrast to resin-bonded crowns (75% survival rate). FEA confirmed these results and provided information about stress and force distribution within the restoration. Based on the findings of in vitro tests and computations we concluded that crowns, especially those with a small ferrule height, should be resin bonded. Finally, centrally positioned fiber-reinforced posts did not contribute to load transfer as long as the bond between the tooth and composite core was intact.
Resumo:
It is well known that the early initiation of a specific antiinfective therapy is crucial to reduce the mortality in severe infection. Procedures culturing pathogens are the diagnostic gold standard in such diseases. However, these methods yield results earliest between 24 to 48 hours. Therefore, severe infections such as sepsis need to be treated with an empirical antimicrobial therapy, which is ineffective in an unknown fraction of these patients. Today's microbiological point of care tests are pathogen specific and therefore not appropriate for an infection with a variety of possible pathogens. Molecular nucleic acid diagnostics such as polymerase chain reaction (PCR) allow the identification of pathogens and resistances. These methods are used routinely to speed up the analysis of positive blood cultures. The newest PCR based system allows the identification of the 25 most frequent sepsis pathogens by PCR in parallel without previous culture in less than 6 hours. Thereby, these systems might shorten the time of possibly insufficient antiinfective therapy. However, these extensive tools are not suitable as point of care diagnostics. Miniaturization and automating of the nucleic acid based method is pending, as well as an increase of detectable pathogens and resistance genes by these methods. It is assumed that molecular PCR techniques will have an increasing impact on microbiological diagnostics in the future.
Resumo:
Quantitative sensory tests are widely used in human research to evaluate the effect of analgesics and explore altered pain mechanisms, such as central sensitization. In order to apply these tests in clinical practice, knowledge of reference values is essential. The aim of this study was to determine the reference values of pain thresholds for mechanical and thermal stimuli, as well as withdrawal time for the cold pressor test in 300 pain-free subjects. Pain detection and pain tolerance thresholds to pressure, heat and cold were determined at three body sites: (1) lower back, (2) suprascapular region and (3) second toe (for pressure) or the lateral aspect of the leg (for heat and cold). The influences of gender, age, height, weight, body-mass index (BMI), body side of testing, depression, anxiety, catastrophizing and parameters of Short-Form 36 (SF-36) were analyzed by multiple regressions. Quantile regressions were performed to define the 5th, 10th and 25th percentiles as reference values for pain hypersensitivity and the 75th, 90th and 95th percentiles as reference values for pain hyposensitivity. Gender, age and/or the interaction of age with gender were the only variables that consistently affected the pain measures. Women were more pain sensitive than men. However, the influence of gender decreased with increasing age. In conclusion, normative values of parameters related to pressure, heat and cold pain stimuli were determined. Reference values have to be stratified by body region, gender and age. The determination of these reference values will now allow the clinical application of the tests for detecting abnormal pain reactions in individual patients.
Resumo:
Clinical manifestations of lactase (LCT) deficiency include intestinal and extra-intestinal symptoms. Lactose hydrogen breath test (H2-BT) is considered the gold standard to evaluate LCT deficiency (LD). Recently, the single-nucleotide polymorphism C/T(-13910) has been associated with LD. The objectives of the present study were to evaluate the agreement between genetic testing of LCT C/T(-13910) and lactose H2-BT, and the diagnostic value of extended symptom assessment. Of the 201 patients included in the study, 194 (139 females; mean age 38, range 17-79 years, and 55 males, mean age 38, range 18-68 years) patients with clinical suspicion of LD underwent a 3-4 h H2-BT and genetic testing for LCT C/T(-13910). Patients rated five intestinal and four extra-intestinal symptoms during the H2-BT and then at home for the following 48 h. Declaring H2-BT as the gold standard, the CC(-13910) genotype had a sensitivity of 97% and a specificity of 95% with a of 0.9 in diagnosing LCT deficiency. Patients with LD had more intense intestinal symptoms 4 h following the lactose challenge included in the H2-BT. We found no difference in the intensity of extra-intestinal symptoms between patients with and without LD. Symptom assessment yielded differences for intestinal symptoms abdominal pain, bloating, borborygmi and diarrhoea between 120 min and 4 h after oral lactose challenge. Extra-intestinal symptoms (dizziness, headache and myalgia) and extension of symptom assessment up to 48 h did not consistently show different results. In conclusion, genetic testing has an excellent agreement with the standard lactose H2-BT, and it may replace breath testing for the diagnosis of LD. Extended symptom scores and assessment of extra-intestinal symptoms have limited diagnostic value in the evaluation of LD.
Resumo:
The best available test for the diagnosis of upper extremity deep venous thrombosis (UEDVT) is contrast venography. The aim of this systematic review was to assess whether the diagnostic accuracy of other tests for clinically suspected UEDVT is high enough to justify their use in clinical practise and to evaluate if any test can replace venography.