903 resultados para Images AVIRIS
Resumo:
The digital image processing has been applied in several areas, especially where it is necessary use tools for feature extraction and to get patterns of the studied images. In an initial stage, the segmentation is used to separate the image in parts that represents a interest object, that may be used in a specific study. There are several methods that intends to perform such task, but is difficult to find a method that can easily adapt to different type of images, that often are very complex or specific. To resolve this problem, this project aims to presents a adaptable segmentation method, that can be applied to different type of images, providing an better segmentation. The proposed method is based in a model of automatic multilevel thresholding and considers techniques of group histogram quantization, analysis of the histogram slope percentage and calculation of maximum entropy to define the threshold. The technique was applied to segment the cell core and potential rejection of tissue in myocardial images of biopsies from cardiac transplant. The results are significant in comparison with those provided by one of the best known segmentation methods available in the literature. © 2010 IEEE.
Resumo:
Aim: To assess the bone mineral density on conventional and digitized images, comparing whether different parameters of digitization and storage change these values. Methods: Twenty radiographs were taken from five partially dentulous dry mandibles with an aluminum 7-mm stepwedge placed on the superior edge of the film. After processing, the films were digitized with a resolution of 600 and 2,400 d.p.i. and saved as TIFF and JPEG files. On every conventional and digitized image, circular regions of interest were selected for densitometry and radiographic contrast analysis. Results: Pearson's correlation coefficient showed a significant and strong mean gray values association between digitized and conventional images, differing from radiographic contrast that did not show a significant association. ANOVA did not reveal a statistically significant difference in bone density and radiographic contrast among the four digitized image groups, but the conventional image contrast was significantly lower. Conclusions: Bone mineral density did not differ in both conventional and digitized images. The parameters of image compression and resolution, tested in this study, did not change the results of densitometry and digitization process increased the radiographic contrast.
Resumo:
This paper presents an individual designing prosthesis for surgical use and proposes a methodology for such design through mathematical extrapolation of data from digital images obtained via tomography of individual patient's bones. Individually tailored prosthesis designed to fit particular patient requirements as accurately as possible should result in more successful reconstruction, enable better planning before surgery and consequently fewer complications during surgery. Fast and accurate design and manufacture of personalized prosthesis for surgical use in bone replacement or reconstruction is potentially feasible through the application and integration of several different existing technologies, which are each at different stages of maturity. Initial case study experiments have been undertaken to validate the research concepts by making dimensional comparisons between a bone and a virtual model produced using the proposed methodology and a future research directions are discussed.
Resumo:
The presence of precipitates in metallic materials affects its durability, resistance and mechanical properties. Hence, its automatic identification by image processing and machine learning techniques may lead to reliable and efficient assessments on the materials. In this paper, we introduce four widely used supervised pattern recognition techniques to accomplish metallic precipitates segmentation in scanning electron microscope images from dissimilar welding on a Hastelloy C-276 alloy: Support Vector Machines, Optimum-Path Forest, Self Organizing Maps and a Bayesian classifier. Experimental results demonstrated that all classifiers achieved similar recognition rates with good results validated by an expert in metallographic image analysis. © 2011 Springer-Verlag Berlin Heidelberg.
Resumo:
This paper presents a method for indirect orientation of aerial images using ground control lines extracted from airborne Laser system (ALS) data. This data integration strategy has shown good potential in the automation of photogrammetric tasks, including the indirect orientation of images. The most important characteristic of the proposed approach is that the exterior orientation parameters (EOP) of a single or multiple images can be automatically computed with a space resection procedure from data derived from different sensors. The suggested method works as follows. Firstly, the straight lines are automatically extracted in the digital aerial image (s) and in the intensity image derived from an ALS data-set (S). Then, correspondence between s and S is automatically determined. A line-based coplanarity model that establishes the relationship between straight lines in the object and in the image space is used to estimate the EOP with the iterated extended Kalman filtering (IEKF). Implementation and testing of the method have employed data from different sensors. Experiments were conducted to assess the proposed method and the results obtained showed that the estimation of the EOP is function of ALS positional accuracy.
Resumo:
This paper describes an image compounding technique based on the use of different apodization functions, the evaluation of the signals phases and information from the interaction of different propagation modes of Lamb waves with defects for enhanced damage detection, resolution and contrast. A 16 elements linear array is attached to a 1 mm thickness isotropic aluminum plate with artificial defects. The array can excite the fundamental A0 and S0 modes at the frequencies of 100 kHz and 360 kHz, respectively. For each mode two synthetic aperture (SA) images with uniform and Blackman apodization and one image of Coherence Factor Map (CFM) are obtained. The specific interaction between each propagation mode and the defects and the characteristics of acoustic radiation patterns due to different apodization functions result in images with different resolution and contrast. From the phase information one of the SA images is selected at each pixel to compound the final image. The SA images are multiplied by the CFM image to improve contrast and for the dispersive A0 mode it is used a technique for dispersion compensation. There is a contrast improvement of 47.5 dB, reducing the dead zone and improving resolution and damage detection. © 2012 IEEE.
Resumo:
In the Nilo Coelho irrigation scheme, Brazil, the natural vegetation has been replaced by irrigated agriculture, bringing importance for the quantification of the effects on the energy exchanges between the mixed vegetated surfaces and the lower atmosphere. Landsat satellite images and agro-meteorological stations from 1992 to 2011 were used together, for modelling these exchanges. Surface albedo (α0), NDVI and surface temperature (T0) were the basic remote sensing retrieving parameters necessary to calculate the latent heat flux (λE) and the surface resistance to evapotranspiration (rs) on a large scale. The daily net radiation (Rn) was obtained from α0, air temperature (Ta) and short-wave transmissivity (τsw) throughout the slob equation, allowing the quantification of the daily sensible heat flux (H) by residual in the energy balance equation. With a threshold value for rs, it was possible to separate the energy fluxes from crops and natural vegetation. The averaged fractions of Rn partitioned as H and λE, were in average 39 and 67%, respectively. It was observed an increase of the energy used for the evapotranspiration process inside irrigated areas from 51% in 1992 to 80% in 2011, with the ratio λE/Rn presenting an increase of 3 % per year. The tools and models applied in the current research, can subsidize the monitoring of the coupled climate and land use changes effects in irrigation perimeters, being valuable when aiming the sustainability of the irrigated agriculture in the future, avoiding conflicts among different water users. © 2012 SPIE.
Resumo:
The municipality of Petrolina, located in the semi-arid region of Brazil, is highlighted as an important agricultural growing region, however the irrigated areas have cleared natural vegetation inducing a loss of biodiversity. To analyze the contrast between these two ecosystems the large scale values of biomass production (BIO), evapotranspiration (ET) and water productivity (WP) were quantified. Monteithś equation was applied for estimating the absorbed photosynthetically active radiation (APAR), while the new SAFER (Simple Algorithm For Evapotranspiration Retrieving) algorithm was used to retrieve ET. The water productivity (WP) was analysed by the ratio of BIO by ET at monthly time scale with four bands of MODIS satellite images together with agrometeorological data for the year of 2011. The period with the highest water productivity values were from March to April in the rainy period for both irrigated and not irrigated conditions. However the largest ET rates were in November for irrigated crops and April for natural vegetation. More uniformity of the vegetation and water variables occurs in natural vegetation, evidenced by the lower values of standard deviation when comparing to irrigated crops, due to the different crop stages, cultural and irrigation managements. The models applied with MODIS satellite images on a large scale are considered to be suitable for water productivity assessments and for quantifying the effects of increasing irrigated areas over natural vegetation on regional water consumption in situations of quick changing land use pattern. © 2012 SPIE.
Resumo:
Includes bibliography
Resumo:
The automatic characterization of particles in metallographic images has been paramount, mainly because of the importance of quantifying such microstructures in order to assess the mechanical properties of materials common used in industry. This automated characterization may avoid problems related with fatigue and possible measurement errors. In this paper, computer techniques are used and assessed towards the accomplishment of this crucial industrial goal in an efficient and robust manner. Hence, the use of the most actively pursued machine learning classification techniques. In particularity, Support Vector Machine, Bayesian and Optimum-Path Forest based classifiers, and also the Otsu's method, which is commonly used in computer imaging to binarize automatically simply images and used here to demonstrated the need for more complex methods, are evaluated in the characterization of graphite particles in metallographic images. The statistical based analysis performed confirmed that these computer techniques are efficient solutions to accomplish the aimed characterization. Additionally, the Optimum-Path Forest based classifier demonstrated an overall superior performance, both in terms of accuracy and speed. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
Considering the importance of monitoring the water quality parameters, remote sensing is a practicable alternative to limnological variables detection, which interacts with electromagnetic radiation, called optically active components (OAC). Among these, the phytoplankton pigment chlorophyll a is the most representative pigment of photosynthetic activity in all classes of algae. In this sense, this work aims to develop a method of spatial inference of chlorophyll a concentration using Artificial Neural Networks (ANN). To achieve this purpose, a multispectral image and fluorometric measurements were used as input data. The multispectral image was processed and the net training and validation dataset were carefully chosen. From this, the neural net architecture and its parameters were defined to model the variable of interest. In the end of training phase, the trained network was applied to the image and a qualitative analysis was done. Thus, it was noticed that the integration of fluorometric and multispectral data provided good results in the chlorophyll a inference, when combined in a structure of artificial neural networks.
Resumo:
Image acquisition systems based on multi-head arrangement of digital camerasare attractive alternatives enabling a larger imaging area when compared to a single framecamera. The calibration of this kind of system can be performed in several steps or byusing simultaneous bundle adjustment with relative orientation stability constraints. Thepaper will address the details of the steps of the proposed approach for system calibration,image rectification, registration and fusion. Experiments with terrestrial and aerial imagesacquired with two Fuji FinePix S3Pro cameras were performed. The experiments focusedon the assessment of the results of self-calibrating bundle adjustment with and withoutrelative orientation constraints and the effects to the registration and fusion when generatingvirtual images. The experiments have shown that the images can be accurately rectified andregistered with the proposed approach, achieving residuals smaller than one pixel. © 2013 by the authors; licensee MDPI, Basel, Switzerland.
Resumo:
This paper presents a novel approach to the computed assessment of a mammographic phantom device. The approach shown here is fully automated and is based on the automatic selection of the region of interest, in the use of the discrete wavelet transform (DWT) and morphological operators to assess the quality of the American College of Radiology (ACR) mammographic phantom images. The algorithms developed here have succesfully scored 30 images obtained with different combinations of voltage applied to the tube and exposure and could notice the differences in the radiographs due to the different level of exposure to radiation. © 2013 Springer-Verlag.
Resumo:
The paper presents and evaluates three methods for automatically estimating the main orientation of Martian dust devil tracks in MOC and HiRISE images. Inferring such information about dust devils from their tracks is important to better understand the near surface wind. The methods considered were based on gradient direction, directional openings and morphological granulometry. The accuracy of the methods was asserted by comparing the results to a set of directions estimated visually and assumed to be the ground truth. The higher accuracy was reached using directional openings. Besides, the directions inferred by this method were compared to those predicted by the GCM and the results agreed. © 2013 COSPAR.