925 resultados para ISOLATED RAT MUSCLE
Resumo:
Cementum is a highly specialized connective tissue that covers tooth roots. The only cementum-specific protein described to date is the cementum attachment protein (CAP). A putative sequence for CAP was established from a cDNA clone isolated from a human cementifying fibroma cDNA library. This sequence overlaps with a phosphatase-like protein in muscle termed the protein-tyrosine phosphatase-like member A (PTPLA). To clarify the nature of CAP/PTPLA, we cloned the homologous rat protein and determined its sequence. The rat protein shared 94% sequence identity with the human protein. On Northern blots containing RNA from various rat tissues of different developmental stages, the cDNA hybridized to an mRNA expressed in heart and skeletal muscle but not in teeth. These results were confirmed by real-time PCR. Thus, the sequence deposited in public databanks under the name 'cementum attachment protein' does not represent genuine CAP.
Resumo:
The small trees of gas-exchanging pulmonary airways which are fed by the most distal purely conducting airways are called acini and represent the functional gas-exchanging units. The three-dimensional architecture of the acini has a strong influence on ventilation and particle deposition. Due to the difficulty to identify individual acini on microscopic lung sections the knowledge about the number of acini and their biological parameters like volume, surface area, and number of alveoli per acinus are limited. We developed a method to extract individual acini from lungs imaged by high-resolution synchrotron radiation based X-ray tomographic microscopy and estimated their volume, surface area and number of alveoli. Rat acini were isolated by semiautomatically closing the airways at the transition from conducting to gas-exchanging airways. We estimated a mean internal acinar volume of 1.148mm(3), a mean acinar surface area of 73.9mm(2), and a mean of 8470 alveoli per acinus. Assuming that the acini are similarly sized throughout different regions of the lung, we calculated that a rat lung contains 5470±833 acini. We conclude that our novel approach is well suited for the fast and reliable characterization of a large number of individual acini in healthy, diseased, or transgenic lungs of different species including humans.
Resumo:
The requirement for growth hormone (GH) secretion by the anterior pituitary gland in beef calves is demonstrated by a complete lack of long bone-growth and muscle accretion after hypophysectomy (surgical removal of the pituitary gland). When the connecting link (hypophyseal stalk) to the basal region (hypothalamus) of the brain is surgically severed, long bone growth and body weight gain are greatly limited compared with sham-operated controls. This limited growth results from obliteration of episodic GH secretion and reduced basal blood concentration of the hormone compared with sham-operated controls. Thus, the hypophyseal stalk-transected (HST) calf provides an appropriate model to determine mechanisms by which hypothalamic neuropeptides from the brain regulate GH secretion, and thereby growth in the young calf. Neuropeptides have been isolated and characterized in bovine hypothalamus that stimulate GH secretion (GH-releasing hormone [GHRH]) or factor [GHRF] and inhibit GH secretion (GH release-inhibiting hormone [GHRIH] or somatostatin [SRIH]). A dose of .067 micrograms of GHRF per kilogram of body weight injected intravenously in HST calves abruptly increased plasma GH concentration to 55 nanograms per milliliter from the control period mean of 5 nanograms per milliliter. HST calves then were infused intravenously with .033 and .067 microgram somatostatin per kilogram of body weight, during which a pulse injection of .067 microgram of GHRF was administered. GH increase was limited to 9 and 5 micrograms per kilogram body weight during the .033- and .067 microgram SRIH infusions after GHRF; no GH rebound was observed after the SRIH was discontinued. GHRF from humans contains 40 to 44 amino acids. Rat hypothalamic GHRF analogs containing 29 to 32 amino acids elicited dose-dependent GH peak release in these HST calves. In 1977, Bowers and Monomy isolated novel GH releasing peptides consisting of only six amino acids; they caused GH release by isolated pituitary cells in culture and acute GH release when administered intravenously. We recently have utilized a novel nonpeptidyl GH secretagogue of low molecular weight in the pig to determine its mechanisms of action within the central nervous system.
Resumo:
But de l’étude L’effet antihypertenseur de la dénervation rénale chez les patients hypertendus s’explique partiellement par une augmentation de la natriurèse tubulaire. Pour étudier une contribution possible du système kallikréine-kinines (SKK) à cette natriurèse dans le rat, nous avons dosé dans le plasma et dans les tissus l’activité de la kallikréine (AK) et la concentration de la bradykinine (BK). Méthodes Pour AK, nous avons adapté et validé un essai enzymatique qui libère la para-nitroaniline à partir du tripeptide H-D-Pro-Phe-Arg-pNA ; les coefficients de variation (CV) intra-essai et inter-essai étaient inférieurs à 8 % pour AK plasmatique et tissulaire (plasma n = 6 et 13, tissu n = 4). La linéarité d’une série de dilutions confirmait la spécificité de l’essai. Le dosage de BK tissulaire se basait sur une méthode établie pour le plasma : tissus étaient homogénéisés et BK extraite et isolée par éthanol et HPLC, et finalement quantifiée par radio-immunoessai. Les CV intra- et inter-essai pour BK étaient 18 % dans le plasma (n = 8 et n = 35) et inférieurs à 16 % dans différents tissus (n = 5–8). Résultats Chez le rat mâle Wistar (n = 3), la BK plasmatique était de 8,2 ± 6,6 fmol/mL (M ± SD) et la BK tissulaire (fmol/g) variait, pour les 14 organes testés, de 14 ± 3 pour le cerveau à 521 ± 315 pour la glande sous-maxillaire. Six jours après dénervation rénale gauche, la BK rénale gauche (89 ± 9) n’était pas différente comparée à la BK rénale droite (75 ± 23). De même, l’AK était identique dans les deux reins (gauche 18,0 ± 1,5, droit 15,8 ± 1,4 μkat/g). Conclusion Un effet éventuel de la dénervation rénale unilatéral sur le SKK rénal devrait donc être bilatéral.
Resumo:
2-Methiopropamine [1-(thiophen-2-yl)-2-methylaminopropane, 2-MPA], a thiophene analogue of methamphetamine, is available from online vendors selling "Research chemicals." The first samples were seized by the German police in 2011. As it is a recreational stimulant, its inclusion in routine drug screening protocols should be required. The aims of this study were to identify the phase I and II metabolites of 2-MPA in rat and human urine and to identify the human cytochrome-P450 (CYP) isoenzymes involved in its phase I metabolism. In addition, the detectability of 2-MPA in urine samples using the authors' well-established gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-linear ion trap-mass spectrometry (LC-MS(n)) screening protocols was also evaluated. The metabolites were isolated from rat and human urine samples by solid-Phase extraction without or following enzymatic cleavage of conjugates. The phase I metabolites, following acetylation, were separated and identified by GC-MS and/or liquid chromatography-high-resolution linear ion trap mass spectrometry (LC-HR-MS(n)) and the phase II metabolites by LC-HR-MS(n). The following Major metabolic pathways were proposed: N-demethylation, hydroxylation at the side chain and at the thiophene ring, and combination of these transformations followed by glucuronidation and/or sulfation. CYP1A2, CYP2C19, CYP2D6, and CYP3A4 were identified as the major phase I metabolizing enzymes. They were also involved in the N-demethylation of the analogue methamphetamine and CYP2C19, CYP2D6, and CYP3A4 in its ring hydroxylation. Following the administration of a typical user's dose, 2-MPA and its metabolites were identified in rat urine using the authors' GC-MS and the LC-MS(n) screening approaches. Ingestion of 2-MPA could also be detected by both protocols in an authentic human urine sample.
Resumo:
Neonatal and adult cardiomyocytes were isolated from rat hearts. Some of the adult myocytes were cultured to allow for cell dedifferentiation, a phenomenon thought to mimic cell changes that occur in stressed myocardium, with myocytes regressing to a fetal pattern of metabolism and stellate neonatal shape.Using fluorescence deconvolution microscopy, cells were probed with fluorescent markers and scanned for a number of proteins associated with ion control, calcium movements and cardiac function. Image analysis of deconvoluted image stacks and sequential real-time image recordings of calcium transients of cells were made.All three myocyte groups were predominantly comprised of binucleate cells. Clustering of proteins to a single nucleus was a common observation, suggesting that one nucleus is active in protein synthesis pathways, while the other nucleus assumes a 'dormant' or different role and that cardiomyocytes might be mitotically active even in late development, or specific protein syntheses could be targeted and regulated for reintroduction into the cell cycle.Such possibilities would extend cardiac disease associated stem cell research and therapy options, while producing valuable insights into developmental and death pathways of binucleate cardiomyocytes (word count 183).
Resumo:
Studies to elucidate the function of vitamin D have demonstrated an important role in regulating bone-related cells, including osteoblasts and osteoclasts. A seemingly paradoxical observation is that 1,25(OH)$\sb2$D$\sb3$, the active metabolite of vitamin D, stimulates bone resorption, yet regulates transcription of genes expressed by osteoblasts. One mechanism that could explain these actions is the upregulation of transcription of osteoblast-specific genes. These gene products could then act as effectors to influence osteoclastic activity. We hypothesized that molecular signals could be deposited directly into the mineralized matrix in the form of noncollagenous proteins, such as osteopontin (OPN). The structure, biosynthesis and localization of OPN suggest that it could function to mediate the molecular "cross talk" between osteoblasts and osteoclasts in response to 1,25(OH)$\sb2$D$\sb3$. To begin to address this hypothesis, elucidation of the molecular mechanisms of action involved in the transactivation of OPN by 1,25(OH)$\sb2$D$\sb3$ is essential.^ In the present study, the rat opn gene was isolated and characterized. Functional analysis by transient transfection of the 5$\sp\prime$ flanking sequences of the rat opn gene fused to the luciferase gene demonstrated that OPN is transcriptionally upregulated by 1,25(OH)$\sb2$D$\sb3$, mediated through two vitamin D response elements (VDRE). Both proximal and distal VDREs are structurally similar (two imperfect direct repeats separated by a 3 nucleotide spacer) and bind protein complexes that include the VDR and retinoid-X receptor (RXR). Isolated VDRE expression constructs produce functional activity of equivalent magnitude of responsiveness to 1,25(OH)$\sb2$D$\sb3$. However, expression constructs containing either VDRE and at least 200 bp of 5$\sp\prime$ and 3$\sp\prime$ flanking sequence demonstrated that the distal VDRE produces an amplitude of response significantly higher than the proximal VDRE. We conclude that the transcriptional upregulation of the opn gene by 1,25(OH)$\sb2$D$\sb3$ involves the transactivation of two VDREs, while maximal responsiveness requires interaction of the VDREs with additional cis-elements contained in the 5$\sp\prime$ sequence. ^
Resumo:
One full length cDNA clone, designated 3aH15, was isolated from a rat brain cDNA library using a fragment of CYP3A2 cDNA as a probe. 3aH15 encoded a protein composed of 503 amino acid residues. The deduced amino acid sequence of 3aH15 was 92% identical to mouse Cyp3a-13 and had a 68.4% to 76.5% homology with the other reported rat CYP3A sequences. Clone 3aH15 was thus named CYP3A9 by Cytochrome P450 Nomenclature Committee. CYP3A9 seems to the major CYP3A isozyme expressed in rat brain. Sexual dimorphism of the expression of CYP3A9 was shown for the first time in rat brain as well as in rat liver. CYP3A9 appears to be female specific in rat liver based on the standards proposed by Kato and Yamazoe who defined sex specific expression of P450s as being a 10-fold or higher expression level in one sex compared with the other. CYP3A9 gene expression was inducible by estrogen treatment both in male and in female rats. Male rats treated with estrogen had a similar expression level of CYP3A9 mRNA both in the liver and brain. Ovariectomy of adult female rats drastically reduced the mRNA level of CYP3A9 which could be fully restored by estrogen replacement. On the other hand, only a two-fold induction of CYP3A9 expression by dexamethasone was observed in male liver and no significant induction of CYP3A9 mRNA was observed in female liver or in the brains. These results suggest that estrogen may play an important role in the female specific expression of the CYP3A9 gene and that CYP3A9 gene expression is regulated differently from other CYP3A isozymes. ^ P450 3A9 recombinant protein was expressed in E. coli using the pCWOri+ expression vector and the MALLLAVF amino terminal sequence modification. This construct gave a high level of expression (130 nmol P450 3A9/liter culture) and the recombinant protein of the modified P450 3A9 was purified to electrophoretic homogeneity (10.1 nmol P450/mg protein) from solubilized fractions using two chromatographic steps. The purified P450 3A9 protein was active towards the metabolism of many clinically important drugs such as imipramine, erythromycin, benzphetamine, ethylmorphine, chlorzoxazone, cyclosporine, rapamycin, etc. in a reconstituted system containing lipid and rat NADPH-P450 reductase. Although P450 3A9 was active towards the catabolism of testosterone, androstenedione, dehydroepiandrosterone (DHEA) and 17β-estradiol, P450 3A9 preferentially catalyzes the metabolism of progesterone to form four different hydroxylated products. Optimal reconstitution conditions for P450 3A9 activities required a lipid mixture and GSH. The possible mechanisms of the stimulatory effects of GSH on P450 3A9 activities are discussed. Sexually dimorphic expression of P450 3A9 in the brain and its involvement in many neuroactive drugs as well as neurosteroids suggest the possible role of P450 3A9 in some mental disorders and brain functions. ^
Resumo:
By the use of Moloney murine sarcoma virus (Mo-MSV)-induced rat bone tumor (RBT) cells as immunogens, and the hybridoma technique, a mouse hybridoma clone was isolated in Dr. Chan's lab (Chan et al., 1983), which produced a monoclonal antibody, designated MC. MC detected specific antigens in three different Mo-MSV-transformed rat cell lines: 78A1 WRC, RBT and 6M2 (NRK cells infected with the ts110 mutant of Mo-MSV), but not in their untransformed counterparts. These antigens are tentatively termed transformation associated proteins (TAP). In this study, TAP were hypothesized to be the rat specific proteins which are activated by Mo-MSV and play an important role in cellular transformation, and were further investigated. Their properties are summarized as follows: (1) TAP may represent cellular products localized in the cytoplasm of 6M2 cells. (2) The expression of TAP is temperature-sensitive and related to cellular transformation, and probably activated by the v-mos gene products. The optimal temperature for the expression of both P85('gag-mos), the only known viral transforming protein in 6M2 cells, and TAP was 28(DEGREES)C. The expression of both P85('gag-mos) and TAP was proportional to the degree of transformation of 6M2 cells. (3) There were four antigenically-related forms of intracellular TAP (P66, P63, P60 and P58) in 6M2 cells. After synthesis, the 58Kd TAP was probably converted to one of the other three forms. These three polypeptides (P66, P63 and P60) were rapidly converted to two (P68 and P64) and subsequently secreted to the extracellular medium with a 50% secretion rate of 78 min. The conversion of these molecular sizes of TAP is probably related to glycosylation. Inhibition of TAP glycosylation by 0.5 ug/ml of tunicamycin could retard the secretion rate of TAP by 39%. (4) TAP are phosphoproteins, but not associated with any protein kinase activity. (5) TAP have been purified, and found to be mitogenic NRK-2 cells. TAP can bind to the receptors of NRK-2 cells with a K(,d) of 1.4 pM and with about 2 x 10('5) binding sites for TAP per NRK-2 cell. (6) Some weak proteolytic activity was found to associate with purified TAP. ^
Resumo:
The metabolism of the antitumor agent 6-thioguanine (TG, NSC-752) by rat liver was studied in vitro. Livers from adult male Sprague-Dawley rats were homogenized and the "liver homogenate" was subjected to differential centrifugation to obtain the "10,000 x g pellet", the "post-mitochondrial fraction", the "cytosol fraction", and the "microsomes". The homogenity of each fraction was estimated by appropriate marker enzyme assays. To delineate the in vitro metabolism of TG by rat liver, 0.2 mM of {8-('14)C}TG was incubated with different subcellular fractions in KCl-Tris-MgCl(,2) buffer, pH 7.4 at 37(DEGREES). The metabolites formed were identified by chromatography, UV spectrometry, as well as mass spectrometry. After a 1 hr incubation, TG was metabolized by the liver homogenate, the 10,000 x g pellet and the post-mitochondrial fraction mainly to 6-thioguanosine (TGR), accompanied by varying lesser amounts of 6-thiouric acid (TUA), allantoin, guanine-6-sulfinic acid (G-SO(,2)H) and an unknown product. In comparison, the cytosal fraction converted TG almost entirely to TGR and TUA in equal amounts. The formation of TGR from TG was limited by the endogenous supply of ribose-1-phosphate. With the microsomal fraction, however, TG was metabolized significantly to G-SO(,2)H and the unknown, accompanied with some TGR. After a 5 hr incubation the metabolism of TG was changed to favor the catabolic route, yielding mostly TUA in the post-mitochondrial and cytosol fractions; but mainly allantoin in the liver homogenate fraction. The kinetic studies of TG metabolism by the subcellar fractions indicated that the formation of TGR served as a depot form of TG. The level of TGR decreased when the catabolism of TG became prominent. The oxidation of TG to GSO(,2)H mediated by the hepatic microsomes represented a new catabolic pathway of TG. This GSO(,2)H, under acidic conditions, readily decomposes to guanine and inorganic sulfate. In the presence of reduced glutathione in Tris buffer, pH 7.8 at 25(DEGREES), GSO(,2)H is adducted to glutathione chemically to form S-(2-amino-purin-6-yl) glutathione and conceivably, inorganic sulfate. Therefore, the formation of GSO(,2)H from TG might have implication in the desulfuration mechanism of TG. On the other hand, the unknown formed from TG by the action of the microsomal enzymes appeared to be a TG conjugate. However, it is neither a glutathione, a glucuronide, nor a ribose conjugate. Additionally, the deamination of TG by guanine deaminase (E.C.3.5.4.3) isolated from rat liver was also investigated. TG is a poorer substrate (Km = 4.8 x 10('-3)M) for guanine deaminase than that of guanine (Km = 4.7 x 10('-6)M) at pH 7.25, optimal pH for TG as a substrate. TG is also a competitive inhibitor of guanine for guanine deaminase, with a ki of 2.2 x 10('-4)M. ^
Resumo:
OBJECTIVES In cardiac muscle, ischemia reperfusion (IR) injury is attenuated by mitochondrial function, which may be upregulated by focal adhesion kinase (FAK). The aim of this study was to determine whether increased FAK levels reduced rhabdomyolysis in skeletal muscle too. MATERIAL AND METHODS In a translational in vivo experiment, rat lower limbs were subjected to 4 hours of ischemia followed by 24 or 72 hours of reperfusion. FAK expression was stimulated 7 days before (via somatic transfection with pCMV-driven FAK expression plasmid) and outcomes were measured against non-transfected and empty transfected controls. Slow oxidative (i.e., mitochondria-rich) and fast glycolytic (i.e., mitochondria-poor) type muscles were analyzed separately regarding rhabdomyolysis, apoptosis, and inflammation. Severity of IR injury was assessed using paired non-ischemic controls. RESULTS After 24 hours of reperfusion, marked rhabdomyolysis was found in non-transfected and empty plasmid-transfected fast-type glycolytic muscle, tibialis anterior. Prior transfection enhanced FAK concentration significantly (p = 0.01). Concomitantly, levels of BAX, promoting mitochondrial transition pores, were reduced sixfold (p = 0.02) together with a blunted inflammation (p = 0.01) and reduced rhabdomyolysis (p = 0.003). Slow oxidative muscle, m. soleus, reacted differently: although apoptosis was detectable after IR, rhabdomyolysis did not appear before 72 hours of reperfusion; and FAK levels were not enhanced in ischemic muscle despite transfection (p = 0.66). CONCLUSIONS IR-induced skeletal muscle rhabdomyolysis is a fiber type-specific phenomenon that appears to be modulated by mitochondria reserves. Stimulation of FAK may exploit these reserves constituting a potential therapeutic approach to reduce tissue loss following acute limb IR in fast-type muscle.
Resumo:
(31)P MRS magnetization transfer ((31)P-MT) experiments allow the estimation of exchange rates of biochemical reactions, such as the creatine kinase equilibrium and adenosine triphosphate (ATP) synthesis. Although various (31)P-MT methods have been successfully used on isolated organs or animals, their application on humans in clinical scanners poses specific challenges. This study compared two major (31)P-MT methods on a clinical MR system using heteronuclear surface coils. Although saturation transfer (ST) is the most commonly used (31)P-MT method, sequences such as inversion transfer (IT) with short pulses might be better suited for the specific hardware and software limitations of a clinical scanner. In addition, small NMR-undetectable metabolite pools can transfer MT to NMR-visible pools during long saturation pulses, which is prevented with short pulses. (31)P-MT sequences were adapted for limited pulse length, for heteronuclear transmit-receive surface coils with inhomogeneous B1 , for the need for volume selection and for the inherently low signal-to-noise ratio (SNR) on a clinical 3-T MR system. The ST and IT sequences were applied to skeletal muscle and liver in 10 healthy volunteers. Monte-Carlo simulations were used to evaluate the behavior of the IT measurements with increasing imperfections. In skeletal muscle of the thigh, ATP synthesis resulted in forward reaction constants (k) of 0.074 ± 0.022 s(-1) (ST) and 0.137 ± 0.042 s(-1) (IT), whereas the creatine kinase reaction yielded 0.459 ± 0.089 s(-1) (IT). In the liver, ATP synthesis resulted in k = 0.267 ± 0.106 s(-1) (ST), whereas the IT experiment yielded no consistent results. ST results were close to literature values; however, the IT results were either much larger than the corresponding ST values and/or were widely scattered. To summarize, ST and IT experiments can both be implemented on a clinical body scanner with heteronuclear transmit-receive surface coils; however, ST results are much more robust against experimental imperfections than the current implementation of IT.
Resumo:
INTRODUCTION Persistent traumatic peroneal nerve palsy, following nerve surgery failure, is usually treated by tendon transfer or more recently by tibial nerve transfer. However, when there is destruction of the tibial anterior muscle, an isolated nerve transfer is not possible. In this article, we present the key steps and surgical tips for the Ninkovic procedure including transposition of the neurotized lateral gastrocnemius muscle with the aim of restoring active voluntary dorsiflexion. SURGICAL TECHNIQUE The transposition of the lateral head of the gastrocnemius muscle to the tendons of the anterior tibial muscle group, with simultaneous transposition of the intact proximal end of the deep peroneal nerve to the tibial nerve of the gastrocnemius muscle by microsurgical neurorrhaphy is performed in one stage. It includes 10 key steps which are described in this article. Since 1994, three clinical series have highlighted the advantages of this technique. Functional and subjective results are discussed. We review the indications and limitations of the technique. CONCLUSION Early clinical results after neurotized lateral gastrocnemius muscle transfer appear excellent; however, they still need to be compared with conventional tendon transfer procedures. Clinical studies are likely to be conducted in this area largely due to the frequency of persistant peroneal nerve palsy and the limitations of functional options in cases of longstanding peripheral nerve palsy, anterior tibial muscle atrophy or destruction.
Resumo:
BACKGROUND Neurogenic thoracic outlet syndrome is an underestimated cause of brachial weakness and pain. The subclavius posticus muscle (SPM) is an aberrant muscle originating from the medial aspect of the first rib reaching to superior border of the scapula, which may cause, depending on its activation, dynamic compression of the brachial plexus. CASE PRESENTATION In the present study, we report about a 32-year-old male caucasian patient with weakness in radial deviation of his left hand. An isolated macrodactyly of his left middle finger had been operated twice. Electroneurography showed a carpal-tunnel-syndrome (CTS) on the left side. MRI of the brachial plexus revealed an additional muscle in the costoclavicular space, identified as SPM. To our knowledge, this is the second case report of a neurogenic thoracic outlet syndrome due to SPM, and the first case described with isolated macrodactyly and CTS in the same patient. CONCLUSION If complaints about hand weakness are only reported in cases of distinct hand positions, a dynamic compression of the brachial plexus by SPM may be the cause. A neurogenic thoracic outlet syndrome may facilitate the development of CTS.
Resumo:
The purpose of the work performed in this dissertation was to examine some of the possible regulatory mechanisms involved in the initiation of muscular atrophy during periods of decreased muscle utilization resulting from hindlimb immobilization in the rat. A 37% decrease in the rate of total muscle protein synthesis which has been observed to occur in the first 6 h of immobilization contributes significantly to the observed loss of protein during immobilization.^ The rates of cytochrome c and actin synthesis were determined in adult rat red vastus lateralis and gastrocnemius muscles, respectively, by the constant infusion and incorporation of ('3)H-tyrosine into protein. The fractional synthesis rates of both actin and cytochrome c were significantly decreased (P < 0.05) in the 6th h of hindlimb immobilization.^ RHA was extracted from adult rat gastrocnemius muscle by modification of the phenol: chloroform: SDS extraction procedures commonly used for preparation of RNA for hybridization analysis from other mammalian tissues. RNA content of rat gastrocnemius muscle, as determined by this method of extraction and its subsequent quantification by UV absorbance and orcinol assay, was significantly greater than the RNA content previously determined for adult rat gastrocnemius by other commonly employed methods.^ RNA extracted by this method from gastrocnemius muscles of control and 6h immobilized rats was subjected to "dot blot" hybridization to ('32)P-labelled probe from plasmid p749, containing a cDNA sequence complementary to (alpha)-actin mRNA and from rat skeletal muscle. (alpha)-Actin specific mRNA content as estimated by this procedure is not significantly decreased in rat gastrocnemius following 6h or hindlimb immobilization. However, (alpha)-actin specific mRNA content is significantly decreased (P < 0.05) in adult rat gastrocnemius (alpha)-actin specific mRNA is not decreased in adult rat gastrocnemius muscle following 6h of immobilization, a time when actin synthesis is significantly decreased, it is concluded that a change in (alpha)-actin specific mRNA content is not the initiating event responsible for the early decrease in actin synthesis observed in the 6th h of immobilization. ^