971 resultados para INDUSTRIAL PRODUCTION
Resumo:
The major 'motor' of the recent Hungarian industrial development has been foreign direct investment, particularly by multinational companies. This has stimulated the development process, as shown by the dynamism of production, exports and profitability of industry in Budapest. On the other hand, this has also led to a split of the industrial sphere into its foreign and domestic sections, or into foreign-owned companies and domestic SMEs. The major question asked in this project is where is Hungarian industry heading and will the gap between the contracting domestic part and the foreign multinationals continue to widen or will they be joined in a much more favourable scenario. Barta sees this as a question of whether Hungary can avoid the 'dead-end street' of South Asian industrialising countries, and instead move towards a new Eastern European or Hungarian model. He concludes that Budapest industry does not follow any given model and indeed its development probably cannot be seen as a 'model' proper in itself, but is, or will be, a mixture of different elements. This would be a welcome fusion of Hungary's rich human resources of accumulated knowledge with foreign direct investment. Budapest would play an exceptional role in such a process, as the gateway for foreign output to the rest of the country. The share of industry in the Budapest economy will continue to decrease, but it will become a more modern and profitable sector. It will also fulfil a technological transfer role between the developed world and the Hungarian countryside (or even a larger region of central and eastern Europe). Barta predicts that Budapest industry will develop a special structure, with a large subcontractor network supporting the large foreign enterprises, and alongside this industrial districts formed by SMEs.
Resumo:
Approximately 90% of fine aerosol in the Midwestern United States has a regional component with a sizable fraction attributed to secondary production of organic aerosol (SOA). The Ozark Forest is an important source of biogenic SOA precursors like isoprene (> 150 mg m-2 d-1), monoterpenes (10-40 mg m-2 d-1), and sesquiterpenes (10-40 mg m-2d-1). Anthropogenic sources include secondary sulfate and nitrate and biomass burning (51-60%), vehicle emissions (17-26%), and industrial emissions (16-18%). Vehicle emissions are an important source of volatile and vapor-phase, semivolatile aliphatic and aromatic hydrocarbons that are important anthropogenic sources of SOA precursors. The short lifetime of SOA precursors and the complex mixture of functionalized oxidation products make rapid sampling, quantitative processing methods, and comprehensive organic molecular analysis essential elements of a comprehensive strategy to advance understanding of SOA formation pathways. Uncertainties in forecasting SOA production on regional scales are large and related to uncertainties in biogenic emission inventories and measurement of SOA yields under ambient conditions. This work presents a bottom-up approach to develop a conifer emission inventory based on foliar and cortical oleoresin composition, development of a model to estimate terpene and terpenoid signatures of foliar and bole emissions from conifers, development of processing and analytic techniques for comprehensive organic molecular characterization of SOA precursors and oxidation products, implementation of the high-volume sampling technique to measure OA and vapor-phase organic matter, and results from a 5 day field experiment conducted to evaluate temporal and diurnal trends in SOA precursors and oxidation products. A total of 98, 115, and 87 terpene and terpenoid species were identified and quantified in commercially available essential oils of Pinus sylvestris, Picea mariana, and Thuja occidentalis, respectively, by comprehensive, two-dimensional gas chromatography with time-of-flight mass spectrometric detection (GC × GC-ToF-MS). Analysis of the literature showed that cortical oleoresin composition was similar to foliar composition of the oldest branches. Our proposed conceptual model for estimation of signatures of terpene and terpenoid emissions from foliar and cortical oleoresin showed that emission potentials of the foliar and bole release pathways are dissimilar and should be considered for conifer species that develop resin blisters or are infested with herbivores or pathogens. Average derivatization efficiencies for Methods 1 and 2 were 87.9 and 114%, respectively. Despite the lower average derivatization efficiency of Method 1, distinct advantages included a greater certainty of derivatization yield for the entire suite of multi- and poly-functional species and fewer processing steps for sequential derivatization. Detection limits for Method 1 using GC × GC- ToF-MS were 0.09-1.89 ng μL-1. A theoretical retention index diagram was developed for a hypothetical GC × 2GC analysis of the complex mixture of SOA precursors and derivatized oxidation products. In general, species eluted (relative to the alkyl diester reference compounds) from the primary column (DB-210) in bands according to n and from the secondary columns (BPX90, SolGel-WAX) according to functionality, essentially making the GC × 2GC retention diagram a Carbon number-functionality grid. The species clustered into 35 groups by functionality and species within each group exhibited good separation by n. Average recoveries of n-alkanes and polyaromatic hydrocarbons (PAHs) by Soxhlet extraction of XAD-2 resin with dichloromethane were 80.1 ± 16.1 and 76.1 ± 17.5%, respectively. Vehicle emissions were the common source for HSVOCs [i.e., resolved alkanes, the unresolved complex mixture (UCM), alkylbenzenes, and 2- and 3-ring PAHs]. An absence of monoterpenes at 0600-1000 and high concentrations of monoterpenoids during the same period was indicative of substantial losses of monoterpenes overnight and the early morning hours. Post-collection, comprehensive organic molecular characterization of SOA precursors and products by GC × GC-ToFMS in ambient air collected with ~2 hr resolution is a promising method for determining biogenic and anthropogenic SOA yields that can be used to evaluate SOA formation models.
Resumo:
The central question for this paper is how to improve the production process by closing the gap between industrial designers and software engineers of television(TV)-based User Interfaces (UI) in an industrial environment. Software engineers are highly interested whether one UI design can be converted into several fully functional UIs for TV products with different screen properties. The aim of the software engineers is to apply automatic layout and scaling in order to speed up and improve the production process. However, the question is whether a UI design lends itself for such automatic layout and scaling. This is investigated by analysing a prototype UI design done by industrial designers. In a first requirements study, industrial designers had created meta-annotations on top of their UI design in order to disclose their design rationale for discussions with software engineers. In a second study, five (out of ten) industrial designers assessed the potential of four different meta-annotation approaches. The question was which annotation method industrial designers would prefer and whether it could satisfy the technical requirements of the software engineering process. One main result is that the industrial designers preferred the method they were already familiar with, which therefore seems to be the most effective one although the main objective of automatic layout and scaling could still not be achieved.
Resumo:
The purpose of the internet-based teachware mySCM is that students of economics, informatics and industrial engineering get familiar with quantitative methods for supply chain management. Input-output-relationships of various optimization methods can be detected by sampling input values, parameters, and alternative methods for the same problem. Students can gain extra benefits by passing so-called mini-exams that motivate active learning. mySCM can be used for free, round-the-clock, and any place where access to the Internet is available.
Resumo:
Due to the ongoing trend towards increased product variety, fast-moving consumer goods such as food and beverages, pharmaceuticals, and chemicals are typically manufactured through so-called make-and-pack processes. These processes consist of a make stage, a pack stage, and intermediate storage facilities that decouple these two stages. In operations scheduling, complex technological constraints must be considered, e.g., non-identical parallel processing units, sequence-dependent changeovers, batch splitting, no-wait restrictions, material transfer times, minimum storage times, and finite storage capacity. The short-term scheduling problem is to compute a production schedule such that a given demand for products is fulfilled, all technological constraints are met, and the production makespan is minimised. A production schedule typically comprises 500–1500 operations. Due to the problem size and complexity of the technological constraints, the performance of known mixed-integer linear programming (MILP) formulations and heuristic approaches is often insufficient. We present a hybrid method consisting of three phases. First, the set of operations is divided into several subsets. Second, these subsets are iteratively scheduled using a generic and flexible MILP formulation. Third, a novel critical path-based improvement procedure is applied to the resulting schedule. We develop several strategies for the integration of the MILP model into this heuristic framework. Using these strategies, high-quality feasible solutions to large-scale instances can be obtained within reasonable CPU times using standard optimisation software. We have applied the proposed hybrid method to a set of industrial problem instances and found that the method outperforms state-of-the-art methods.
Resumo:
In this paper, we are concerned about the short-term scheduling of industrial make-and-pack production processes. The planning problem consists in minimizing the production makespan while meeting given end-product demands. Sequence-dependent changeover times, multi-purpose storage units with finite capacities, quarantine times, batch splitting, partial equipment connectivity, material transfer times, and a large number of operations contribute to the complexity of the problem. Known MILP formulations cover all technological constraints of such production processes, but only small problem instances can be solved in reasonable CPU times. In this paper, we develop a heuristic in order to tackle large instances. Under this heuristic, groups of batches are scheduled iteratively using a novel MILP formulation; the assignment of the batches to the groups and the scheduling sequence of the groups are determined using a priority rule. We demonstrate the applicability by means of a real-world production process.
Resumo:
Regional integration proposals often require agreements between countries that differ in geographic size, resource endowments, transportation assets, technologies, and product quality. In this asymmetric setting, questions arise about the potential for mutual gains and the distribution of benefits among industries and workers in each country. This paper examines how regional integration between a small landlocked country and a large neighboring country--with a unique port facility that both nations must use to export goods--affects the wage and location decisions of firms, the allocation of labor, the welfare of each country's workers and firms, and aggregate measures of economic welfare in each country and the region. A simulated spatial labor market model is used to explore the economic effects of various stages of regional integration. Beginning with autarky as a benchmark case, we consider two forms of regional integration: partial mobility (mobile labor with geographically restricted firms); and full mobility (mobile labor and firms) with convergence of production technologies and product quality.
Resumo:
Asbestos and silica are important industrial hazards. Exposure to these dusts can result in pulmonary fibrosis and, in the case of asbestos, cancer. Although the hazards of asbestos and silica exposure have long been known, the pathogenesis of dust-related disease is not well understood. Both silica and asbestos are thought to alter the function of the alveolar macrophage, but the nature of the biochemical alteration is unknown. Therefore, this study examined the effect of asbestos and silica on the activation pathway of the guinea pig alveolar macrophage. Activation of macrophages by physiological agents results in stimulation of phospholipase C causing phosphatidyl inositol turnover and intracellular calcium mobilization. Phosphatidyl inositol turnover produces diacylglycerol which activates protein kinase C causing superoxide anion production.^ Chrysotile stimulated alveolar macrophages to produce superoxide anion. This stimulation proceeded via phospholipase C, since chrysotile stimulated phosphatidyl inositol turnover and intracellular calcium mobilization. The possible involvement of a coupling protein was evaluated by pretreating cells with pertussis toxin. Pertussis toxin pretreatment partially inhibited chrysotile stimulation, suggesting that chrysotile activates a coupling protein in an non-classical manner. Potential binding sites for chrysotile stimulation were examined using a series of nine lectins. Chrysotile-stimulated superoxide anion production was blocked by pretreatment with lectins which bound to N-acetylglucosamine, but not by lectins which bound to mannose, fucose, or N-acetylgalactosamine. In addition, incubation with the N-acetylglucosamine polymer, chitin, inhibited chrysotile-stimulated superoxide anion production, suggesting that chrysotile stimulated superoxide anion production by binding to N-acetylglucosamine residues.^ On the other hand, silica did not stimulate superoxide anion production. The effect of silica on agonist stimulation of this pathway was examined using two stimulants of superoxide anion production, N-formyl-nle-leu-phe (FNLP, which stimulates through phospholipase C) and phorbol-12,13-dibutyrate (which directly activates protein kinase C). Sublethal doses of silica inhibited FNLP-stimulated superoxide anion production, but did not affect phorbol-12,13-dibutyrate-stimulated superoxide anion production, suggesting that the site of inhibition precedes protein kinase C. This inhibition was not due to cell membrane damage, since cell permeability to calcium-45 and rubidium-86 was not increased. It is concluded that chrysotile binds to N-acetylglucosamine residues on macrophage surface glycoproteins to stimulate the physiological pathway resulting in superoxide anion production. In contrast, silica does not stimulate superoxide anion production, but it did inhibit FNLP-stimulated superoxide anion production. ^
Resumo:
El topinambur pertenece a la familia de las Asteráceas, es una especie originaria de América del Norte, de la que fundamentalmente se aprovechan sus tubérculos; tiene gran potencial como alimento, materia prima para productos industriales y producción de biocombustibles. En Argentina no hay cultivares de topinambur registrados. Sin embargo hay documentación y testimonios del ingreso de distintas variedades al país a principios del siglo XX. El objetivo de esta tesis fue caracterizar el germoplasma de topinambur que se cultiva, a pequeña escala, en distintas regiones de la Argentina. Se formó una colección de trabajo con introducciones provenientes de 5 provincias del país (Río Negro, Chubut, Buenos Aires, Mendoza y Córdoba), y se condujeron ensayos experimentales en dos ambientes de la provincia de Mendoza. Se evaluaron caracteres morfológicos (altura de plantas, dimensiones y ángulo de inserción de hojas, tamaño de tubérculos), fenológicos (emergencia, inicio, fin y duración de floración, senescencia del cultivo) y rendimiento. Se detectaron diferencias morfológicas que permitieron agrupar a las introducciones en dos grupos, correspondiendo uno a introducciones de tubérculos rojos y el otro a introducciones de tubérculos blancos. Se valoró la aptitud hortícola de las introducciones mediante evaluación sensorial; se realizó una prueba de preferencia y percepción de distintos aspectos de la hortaliza (color, olor, sabor y textura), consumida cruda. El nivel de aceptación general de la hortaliza fue bueno. Se evaluó el potencial industrial (obtención de inulina y producción de etanol). Se determinó por HPLC el contenido de inulina de cada introducción, que varió de 18.07 a 22.95 % y se estimó el potencial para producir etanol a partir de los hidratos de carbono fermentables de los tubérculos, que llegó a 4.934 litros por ha, aunque sin diferencias entre introducciones.
Resumo:
Luego de un período de desmantelamiento de la estructura productiva nacional desde fines de 2002 la economía argentina comenzó lentamente a recuperarse, con una incipiente revitalización de la industria. En este escenario, el trabajo describe el perfil y las características de la estructura industrial de la provincia de Mendoza con el fin de trazar el punto de partida para el potencial desarrollo económico local, en relación con la distribución geográfica de las unidades productivas, los sectores más dinámicos y su concentración, diferenciando a aquellas según tamaño definido por cantidad de ocupados. Los datos analizados provienen del Censo Industrial Provincial, 2002/2003.