960 resultados para Gottfried, von Strassburg, active 13th century.
Resumo:
This article examines the growing phenomenon of online dating and intimacy in the 21st century. The exponential rise of communications technologies, which is both reflective and constitutive of an increasingly networked and globalized society, has the potential to significantly influence the nature of intimacy in everyday life. Yet, to date, there has been a minimal response by sociologists to seek, describe and understand this influence. In this article, we present some of the key findings of our research on online dating in Australia, in order to foster a debate about the sociological impacts on intimacy in the postmodern world. Based on a web audit of more than 60 online dating sites and in-depth interviews with 23 users of online dating services, we argue that recent global trends are influencing the uptake of online technologies for the purposes of forming intimate relations. Further, some of the mediating effects of these technologies – in particular, the hypercommunication – may have specific implications for the nature of intimacy in the global era.
Resumo:
Non-Western practitioners across the globe instinctively attempt to implement Western-based public relations models and theories, often unsuccessfully, regardless of their surrounding environment. This paper reviews business practices and reveals that in Europe, company interests are a main priority, while in Asia, the line between business and personal relationships is extremely blurred. Cultural dimensions and topois were even more varied between the three regions. Implications for the adoption of Western models of public relations practice are discussed.
Resumo:
Libertine erotic novellas included a number of seductive descriptions of unfolding spaces often seen through the eyes of a narrator. Instructional volumes such as Point de lendermain by Vivant Denon (1777) aimed at the sexual education of young women and the titillation of men also followed suit. Similarly architectural theory such as Le Camus de Mézières’, The Genius of Architecture (1780) also promoted the sensuous and seductive aspects of surfaces and spatial arrangements. In the erotic settings of the cabinet, descriptions of curtains generate as much arousal as the outline of a naked body, and for some players it is the space that is desired above their lover.
Resumo:
This thesis is about the derivation of the addition law on an arbitrary elliptic curve and efficiently adding points on this elliptic curve using the derived addition law. The outcomes of this research guarantee practical speedups in higher level operations which depend on point additions. In particular, the contributions immediately find applications in cryptology. Mastered by the 19th century mathematicians, the study of the theory of elliptic curves has been active for decades. Elliptic curves over finite fields made their way into public key cryptography in late 1980’s with independent proposals by Miller [Mil86] and Koblitz [Kob87]. Elliptic Curve Cryptography (ECC), following Miller’s and Koblitz’s proposals, employs the group of rational points on an elliptic curve in building discrete logarithm based public key cryptosystems. Starting from late 1990’s, the emergence of the ECC market has boosted the research in computational aspects of elliptic curves. This thesis falls into this same area of research where the main aim is to speed up the additions of rational points on an arbitrary elliptic curve (over a field of large characteristic). The outcomes of this work can be used to speed up applications which are based on elliptic curves, including cryptographic applications in ECC. The aforementioned goals of this thesis are achieved in five main steps. As the first step, this thesis brings together several algebraic tools in order to derive the unique group law of an elliptic curve. This step also includes an investigation of recent computer algebra packages relating to their capabilities. Although the group law is unique, its evaluation can be performed using abundant (in fact infinitely many) formulae. As the second step, this thesis progresses the finding of the best formulae for efficient addition of points. In the third step, the group law is stated explicitly by handling all possible summands. The fourth step presents the algorithms to be used for efficient point additions. In the fifth and final step, optimized software implementations of the proposed algorithms are presented in order to show that theoretical speedups of step four can be practically obtained. In each of the five steps, this thesis focuses on five forms of elliptic curves over finite fields of large characteristic. A list of these forms and their defining equations are given as follows: (a) Short Weierstrass form, y2 = x3 + ax + b, (b) Extended Jacobi quartic form, y2 = dx4 + 2ax2 + 1, (c) Twisted Hessian form, ax3 + y3 + 1 = dxy, (d) Twisted Edwards form, ax2 + y2 = 1 + dx2y2, (e) Twisted Jacobi intersection form, bs2 + c2 = 1, as2 + d2 = 1, These forms are the most promising candidates for efficient computations and thus considered in this work. Nevertheless, the methods employed in this thesis are capable of handling arbitrary elliptic curves. From a high level point of view, the following outcomes are achieved in this thesis. - Related literature results are brought together and further revisited. For most of the cases several missed formulae, algorithms, and efficient point representations are discovered. - Analogies are made among all studied forms. For instance, it is shown that two sets of affine addition formulae are sufficient to cover all possible affine inputs as long as the output is also an affine point in any of these forms. In the literature, many special cases, especially interactions with points at infinity were omitted from discussion. This thesis handles all of the possibilities. - Several new point doubling/addition formulae and algorithms are introduced, which are more efficient than the existing alternatives in the literature. Most notably, the speed of extended Jacobi quartic, twisted Edwards, and Jacobi intersection forms are improved. New unified addition formulae are proposed for short Weierstrass form. New coordinate systems are studied for the first time. - An optimized implementation is developed using a combination of generic x86-64 assembly instructions and the plain C language. The practical advantages of the proposed algorithms are supported by computer experiments. - All formulae, presented in the body of this thesis, are checked for correctness using computer algebra scripts together with details on register allocations.
Resumo:
The obesity epidemic is a global trend and is of particular concern in children. Recent reports have highlighted the severity of obesity in children by suggesting: “today's generation of children will be the first for over a century for whom life expectancy falls.” This review assesses the evidence that identifies the important role of physical activity in the growth, development and physical health of young people, owing to its numerous physical and psychological health benefits. Key issues, such as “does a sedentary lifestyle automatically lead to obesity” and “are levels of physical activity in today's children less than physical activity levels in children from previous generations?”, are also discussed. Today's environment enforces an inactive lifestyle that is likely to contribute to a positive energy balance and childhood obesity. Whether a child or adolescent, the evidence is conclusive that physical activity is conducive to a healthy lifestyle and prevention of disease. Habitual physical activity established during the early years may provide the greatest likelihood of impact on mortality and longevity. It is evident that environmental factors need to change if physical activity strategies are to have a significant impact on increasing habitual physical activity levels in children and adolescents. There is also a need for more evidence-based physical activity guidelines for children of all ages. Efforts should be concentrated on facilitating an active lifestyle for children in an attempt to put a stop to the increasing prevalence of obese children
Resumo:
In this paper, the optimal design of an active flow control device; Shock Control Bump (SCB) on suction and pressure sides of transonic aerofoil to reduce transonic total drag is investigated. Two optimisation test cases are conducted using different advanced Evolutionary Algorithms (EAs); the first optimiser is the Hierarchical Asynchronous Parallel Evolutionary Algorithm (HAPMOEA) based on canonical Evolutionary Strategies (ES). The second optimiser is the HAPMOEA is hybridised with one of well-known Game Strategies; Nash-Game. Numerical results show that SCB significantly reduces the drag by 30% when compared to the baseline design. In addition, the use of a Nash-Game strategy as a pre-conditioner of global control saves computational cost up to 90% when compared to the first optimiser HAPMOEA.
Resumo:
A mathematical model is developed to simulate the discharge of a LiFePO4 cathode. This model contains 3 size scales, which match with experimental observations present in the literature on the multi-scale nature of LiFePO4 material. A shrinking-core is used on the smallest scale to represent the phase-transition of LiFePO4 during discharge. The model is then validated against existing experimental data and this validated model is then used to investigate parameters that influence active material utilisation. Specifically the size and composition of agglomerates of LiFePO4 crystals is discussed, and we investigate and quantify the relative effects that the ionic and electronic conductivities within the oxide have on oxide utilisation. We find that agglomerates of crystals can be tolerated under low discharge rates. The role of the electrolyte in limiting (cathodic) discharge is also discussed, and we show that electrolyte transport does limit performance at high discharge rates, confirming the conclusions of recent literature.
Resumo:
When the supply voltages are balanced and sinusoidal, load compensation can give both unity power factor (UPF) and perfect harmonic cancellation (PHC) source currents. But under distorted supply voltages, achieving both UPF and PHC currents are not possible and contradictory to each other. Hence there should be an optimal performance between these two important compensation goals. This paper presents an optimal control algorithm for load compensation under unbalanced and distorted supply voltages. In this algorithm source currents are compensated for reactive, imbalance components and harmonic distortions set by the limits. By satisfying the harmonic distortion limits and power balance, this algorithm gives the source currents which will provide the maximum achievable power factor. The detailed simulation results using MATLAB are presented to support the performance of the proposed optimal control algorithm.