981 resultados para Genetic connectivity
Resumo:
The species Formica aquilonia and F. lugubris of the mound-building red wood ants have a disjunct boreoalpine distribution in Europe. The populations of F. aquilonia in Finland, Switzerland and the British Isles show little genetic differentiation, whereas the populations of F. lugubris show considerable differentiation. The Central European populations morphologically identified as F. lugubris can be genetically divided into two groups (here called types A and B). Type B is found in the Alps and the Jura mountains, and is genetically inseparable from F. aquilonia. Type A lives sympatrically with type B in the Jura mountains and is also found in the British Isles. Sympatry of the two types in the Jura shows that these are separate species. It remains open whether type B is morphologically atypical F. aquilonia or whether it is a separate species, perhaps with a past history of introgression between F. aquilonia and F. lugubris. The gene frequencies in the Finnish populations of F. lugubris differ from those of both types A and B. Genetic differences within F. lugubris indicate that the populations have evolved separately for a long time. The social structure of F. lugubris colonies also shows geographic variation. The nests in Finland and the British Isles seem to be mainly monogynous and monodomous, whereas the nests in Central Europe are polygynous and form polydomous colonies. F. aquilonia has polygynous and polydomous colonies in all populations studied.
Resumo:
Epidemiological studies have recognized a genetic diathesis for suicidal behavior, which is independent of other psychiatric disorders. Genome-wide association studies (GWAS) on suicide attempt (SA) and ideation have failed to identify specific genetic variants. Here, we conduct further GWAS and for the first time, use polygenic score analysis in cohorts of patients with mood disorders, to test for common genetic variants for mood disorders and suicide phenotypes. Genome-wide studies for SA were conducted in the RADIANT and GSK-Munich recurrent depression samples and London Bipolar Affective Disorder Case-Control Study (BACCs) then meta-analysis was performed. A GWAS on suicidal ideation during antidepressant treatment had previously been conducted in the Genome Based Therapeutic Drugs for Depression (GENDEP) study. We derived polygenic scores from each sample and tested their ability to predict SA in the mood disorder cohorts or ideation status in the GENDEP study. Polygenic scores for major depressive disorder, bipolar disorder and schizophrenia from the Psychiatric Genomics Consortium were used to investigate pleiotropy between psychiatric disorders and suicide phenotypes. No significant evidence for association was detected at any SNP in GWAS or meta-analysis. Polygenic scores for major depressive disorder significantly predicted suicidal ideation in the GENDEP pharmacogenetics study and also predicted SA in a combined validation dataset. Polygenic scores for SA showed no predictive ability for suicidal ideation. Polygenic score analysis suggests pleiotropy between psychiatric disorders and suicidal ideation whereas the tendency to act on such thoughts may have a partially independent genetic diathesis. © 2014 Wiley Periodicals, Inc.
Resumo:
Microsatellites are used to unravel the fine-scale genetic structure of a hybrid zone between chromosome races Valais and Cordon of the common shrew (Sorex araneus) located in the French Alps. A total of 269 individuals collected between 1992 and 1995 was typed for seven microsatellite loci. A modified version of the classical multiple correspondence analysis is carried out. This analysis clearly shows the dichotomy between the two races. Several approaches are used to study genetic structuring. Gene flow is clearly reduced between these chromosome races and is estimated at one migrant every two generations using X-statistics and one migrant per generation using F-statistics. Hierarchical F- and R-statistics are compared and their efficiency to detect inter- and intraracial patterns of divergence is discussed. Within-race genetic structuring is significant, but remains weak. F-ST displays similar values on both sides of the hybrid zone, although no environmental barriers are found on the Cordon side, whereas the Valais side is divided by several mountain rivers. We introduce the exact G-test to microsatellite data which proved to be a powerful test to detect genetic differentiation within as well as among races. The genetic background of karyotypic hybrids was compared with the genetic background of pure parental forms using a CRT-MCA. Our results indicate that, without knowledge of the karyotypes, we would not have been able to distinguish these hybrids from karyotypically pure samples.
Resumo:
Using genome-wide association, we identify common variants at 2p12-p13, 6q26, 17q23 and 19q13 associated with serum creatinine, a marker of kidney function (P = 10(-10) to 10(-15)). Of these, rs10206899 (near NAT8, 2p12-p13) and rs4805834 (near SLC7A9, 19q13) were also associated with chronic kidney disease (P = 5.0 x 10(-5) and P = 3.6 x 10(-4), respectively). Our findings provide insight into metabolic, solute and drug-transport pathways underlying susceptibility to chronic kidney disease.
Resumo:
Understanding brain reserve in preclinical stages of neurodegenerative disorders allows determination of which brain regions contribute to normal functioning despite accelerated neuronal loss. Besides the recruitment of additional regions, a reorganisation and shift of relevance between normally engaged regions are a suggested key mechanism. Thus, network analysis methods seem critical for investigation of changes in directed causal interactions between such candidate brain regions. To identify core compensatory regions, fifteen preclinical patients carrying the genetic mutation leading to Huntington's disease and twelve controls underwent fMRI scanning. They accomplished an auditory paced finger sequence tapping task, which challenged cognitive as well as executive aspects of motor functioning by varying speed and complexity of movements. To investigate causal interactions among brain regions a single Dynamic Causal Model (DCM) was constructed and fitted to the data from each subject. The DCM parameters were analysed using statistical methods to assess group differences in connectivity, and the relationship between connectivity patterns and predicted years to clinical onset was assessed in gene carriers. In preclinical patients, we found indications for neural reserve mechanisms predominantly driven by bilateral dorsal premotor cortex, which increasingly activated superior parietal cortices the closer individuals were to estimated clinical onset. This compensatory mechanism was restricted to complex movements characterised by high cognitive demand. Additionally, we identified task-induced connectivity changes in both groups of subjects towards pre- and caudal supplementary motor areas, which were linked to either faster or more complex task conditions. Interestingly, coupling of dorsal premotor cortex and supplementary motor area was more negative in controls compared to gene mutation carriers. Furthermore, changes in the connectivity pattern of gene carriers allowed prediction of the years to estimated disease onset in individuals. Our study characterises the connectivity pattern of core cortical regions maintaining motor function in relation to varying task demand. We identified connections of bilateral dorsal premotor cortex as critical for compensation as well as task-dependent recruitment of pre- and caudal supplementary motor area. The latter finding nicely mirrors a previously published general linear model-based analysis of the same data. Such knowledge about disease specific inter-regional effective connectivity may help identify foci for interventions based on transcranial magnetic stimulation designed to stimulate functioning and also to predict their impact on other regions in motor-associated networks.
Resumo:
Hereditary non-structural diseases such as catecholaminergic polymorphic ventricular tachycardia (CPVT), long QT, and the Brugada syndrome as well as structural disease such as hypertrophic cardiomyopathy (HCM) and arrhythmogenic right ventricular cardiomyopathy (ARVC) cause a significant percentage of sudden cardiac deaths in the young. In these cases, genetic testing can be useful and does not require proxy consent if it is carried out at the request of judicial authorities as part of a forensic death investigation. Mutations in several genes are implicated in arrhythmic syndromes, including SCN5A, KCNQ1, KCNH2, RyR2, and genes causing HCM. If the victim's test is positive, this information is important for relatives who might be themselves at risk of carrying the disease-causing mutation. There is no consensus about how professionals should proceed in this context. This article discusses the ethical and legal arguments in favour of and against three options: genetic testing of the deceased victim only; counselling of relatives before testing the victim; counselling restricted to relatives of victims who tested positive for mutations of serious and preventable diseases. Legal cases are mentioned that pertain to the duty of geneticists and other physicians to warn relatives. Although the claim for a legal duty is tenuous, recent publications and guidelines suggest that geneticists and others involved in the multidisciplinary approach of sudden death (SD) cases may, nevertheless, have an ethical duty to inform relatives of SD victims. Several practical problems remain pertaining to the costs of testing, the counselling and to the need to obtain permission of judicial authorities.
Resumo:
Root system architecture is a trait that displays considerable plasticity because of its sensitivity to environmental stimuli. Nevertheless, to a significant degree it is genetically constrained as suggested by surveys of its natural genetic variation. A few regulators of root system architecture have been isolated as quantitative trait loci through the natural variation approach in the dicotyledon model, Arabidopsis. This provides proof of principle that allelic variation for root system architecture traits exists, is genetically tractable, and might be exploited for crop breeding. Beyond Arabidopsis, Brachypodium could serve as both a credible and experimentally accessible model for root system architecture variation in monocotyledons, as suggested by first glimpses of the different root morphologies of Brachypodium accessions. Whether a direct knowledge transfer gained from molecular model system studies will work in practice remains unclear however, because of a lack of comprehensive understanding of root system physiology in the native context. For instance, apart from a few notable exceptions, the adaptive value of genetic variation in root system modulators is unknown. Future studies should thus aim at comprehensive characterization of the role of genetic players in root system architecture variation by taking into account the native environmental conditions, in particular soil characteristics.
Resumo:
In this study we investigated the effect of medial temporal lobe epilepsy (MTLE) on the global characteristics of brain connectivity estimated by topological measures. We used DSI (Diffusion Spectrum Imaging) to construct a connectivity matrix where the nodes represents the anatomical ROIs and the edges are the connections between any pair of ROIs weighted by the mean GFA/FA values. A significant difference was found between the patient group vs control group in characteristic path length, clustering coefficient and small-worldness. This suggests that the MTLE network is less efficient compared to the network of the control group.
Resumo:
The scenario considered here is one where brain connectivity is represented as a network and an experimenter wishes to assess the evidence for an experimental effect at each of the typically thousands of connections comprising the network. To do this, a univariate model is independently fitted to each connection. It would be unwise to declare significance based on an uncorrected threshold of α=0.05, since the expected number of false positives for a network comprising N=90 nodes and N(N-1)/2=4005 connections would be 200. Control of Type I errors over all connections is therefore necessary. The network-based statistic (NBS) and spatial pairwise clustering (SPC) are two distinct methods that have been used to control family-wise errors when assessing the evidence for an experimental effect with mass univariate testing. The basic principle of the NBS and SPC is the same as supra-threshold voxel clustering. Unlike voxel clustering, where the definition of a voxel cluster is unambiguous, 'clusters' formed among supra-threshold connections can be defined in different ways. The NBS defines clusters using the graph theoretical concept of connected components. SPC on the other hand uses a more stringent pairwise clustering concept. The purpose of this article is to compare the pros and cons of the NBS and SPC, provide some guidelines on their practical use and demonstrate their utility using a case study involving neuroimaging data.
Resumo:
Salmonid populations of many rivers are rapidly declining. One possible explanation is that habitat fragmentation increases genetic drift and reduces the populations' potential to adapt to changing environmental conditions. We measured the genetic and eco-morphological diversity of brown trout (Salmo trutta) in a Swiss stream system, using multivariate statistics and Bayesian clustering. We found large genetic and phenotypic variation within only 40 km of stream length. Eighty-eight percent of all pairwise F(ST) comparisons and 50% of the population comparisons in body shape were significant. High success rates of population assignment tests confirmed the distinctiveness of populations in both genotype and phenotype. Spatial analysis revealed that divergence increased with waterway distance, the number of weirs, and stretches of poor habitat between sampling locations, but effects of isolation-by-distance and habitat fragmentation could not be fully disentangled. Stocking intensity varied between streams but did not appear to erode genetic diversity within populations. A lack of association between phenotypic and genetic divergence points to a role of local adaptation or phenotypically plastic responses to habitat heterogeneity. Indeed, body shape could be largely explained by topographic stream slope, and variation in overall phenotype matched the flow regimes of the respective habitats.
Resumo:
Size-selective fishing, environmental changes and reproductive strategies are expected to affect life-history traits such as the individual growth rate. The relative contribution of these factors is not clear, particularly whether size-selective fishing can have a substantial impact on the genetics and hence on the evolution of individual growth rates in wild populations. We analysed a 25-year monitoring survey of an isolated population of the Alpine whitefish Coregonus palaea. We determined the selection differentials on growth rate, the actual change of growth rate over time and indicators of reproductive strategies that may potentially change over time. The selection differential can be reliably estimated in our study population because almost all the fish are harvested within their first years of life, i.e. few fish escape fishing mortality. We found a marked decline in average adult growth rate over the 25 years and a significant selection differential for adult growth, but no evidence for any linear change in reproductive strategies over time. Assuming that the heritability of growth in this whitefish corresponds to what was found in other salmonids, about a third of the observed decline in growth rate would be linked to fishery-induced evolution. Size-selective fishing seems to affect substantially the genetics of individual growth in our study population.
Resumo:
Thirty strains from the 11 species of the genus Leptospira were studied by multilocus enzyme electrophoresis at 12 enzyme loci, all of which were polymorphic. The mean number of alleles per locus was 6.5. Twenty-five electrophoretic types were distinguished. Grouping of the strains by cluster analysis was in general agreement with species delineation as determined by DNA-DNA hybridization, except for the strains of Leptospira meyeri and Leptospira inadai, which were scattered throughout the genus, reflecting previously recognized taxonomic uncertainties. Analysis of the clonality within Leptospira interrogans sensu stricto indicated that this population was relatively heterogeneous and a lack of gene linkage disequilibrium could not be excluded. There was a genetic discrimination between the pathogenic species and the saprophytic ones. The phenotypically intermediate species (L. inadai and Leptospira fainei) were also genetically separated and were probably closer to the saprophytes than to the pathogens.
Resumo:
The recent advance in high-throughput sequencing and genotyping protocols allows rapid investigation of Mendelian and complex diseases on a scale not previously been possible. In my thesis research I took advantage of these modern techniques to study retinitis pigmentosa (RP), a rare inherited disease characterized by progressive loss of photoreceptors and leading to blindness; and hypertension, a common condition affecting 30% of the adult population. Firstly, I compared the performance of different next generation sequencing (NGS) platforms in the sequencing of the RP-linked gene PRPF31. The gene contained a mutation in an intronic repetitive element, which presented difficulties for both classic sequencing methods and NGS. We showed that all NGS platforms are powerful tools to identify rare and common DNA variants, also in case of more complex sequences. Moreover, we evaluated the features of different NGS platforms that are important in re-sequencing projects. The main focus of my thesis was then to investigate the involvement of pre-mRNA splicing factors in autosomal dominant RP (adRP). I screened 5 candidate genes in a large cohort of patients by using long-range PCR as enrichment step, followed by NGS. We tested two different approaches: in one, all target PCRs from all patients were pooled and sequenced as a single DNA library; in the other, PCRs from each patient were separated within the pool by DNA barcodes. The first solution was more cost-effective, while the second one allowed obtaining faster and more accurate results, but overall they both proved to be effective strategies for gene screenings in many samples. We could in fact identify novel missense mutations in the SNRNP200 gene, encoding an essential RNA helicase for splicing catalysis. Interestingly, one of these mutations showed incomplete penetrance in one family with adRP. Thus, we started to study the possible molecular causes underlying phenotypic differences between asymptomatic and affected members of this family. For the study of hypertension, I joined a European consortium to perform genome-wide association studies (GWAS). Thanks to the use of very informative genotyping arrays and of phenotipically well-characterized cohorts, we could identify a novel susceptibility locus for hypertension in the promoter region of the endothelial nitric oxide synthase gene (NOS3). Moreover, we have proven the direct causality of the associated SNP using three different methods: 1) targeted resequencing, 2) luciferase assay, and 3) population study. - Le récent progrès dans le Séquençage à haut Débit et les protocoles de génotypage a permis une plus vaste et rapide étude des maladies mendéliennes et multifactorielles à une échelle encore jamais atteinte. Durant ma thèse de recherche, j'ai utilisé ces nouvelles techniques de séquençage afin d'étudier la retinite pigmentale (RP), une maladie héréditaire rare caractérisée par une perte progressive des photorécepteurs de l'oeil qui entraine la cécité; et l'hypertension, une maladie commune touchant 30% de la population adulte. Tout d'abord, j'ai effectué une comparaison des performances de différentes plateformes de séquençage NGS (Next Generation Sequencing) lors du séquençage de PRPF31, un gène lié à RP. Ce gène contenait une mutation dans un élément répétable intronique, qui présentait des difficultés de séquençage avec la méthode classique et les NGS. Nous avons montré que les plateformes de NGS analysées sont des outils très puissants pour identifier des variations de l'ADN rares ou communes et aussi dans le cas de séquences complexes. De plus, nous avons exploré les caractéristiques des différentes plateformes NGS qui sont importantes dans les projets de re-séquençage. L'objectif principal de ma thèse a été ensuite d'examiner l'effet des facteurs d'épissage de pre-ARNm dans une forme autosomale dominante de RP (adRP). Un screening de 5 gènes candidats issus d'une large cohorte de patients a été effectué en utilisant la long-range PCR comme étape d'enrichissement, suivie par séquençage avec NGS. Nous avons testé deux approches différentes : dans la première, toutes les cibles PCRs de tous les patients ont été regroupées et séquencées comme une bibliothèque d'ADN unique; dans la seconde, les PCRs de chaque patient ont été séparées par code barres d'ADN. La première solution a été la plus économique, tandis que la seconde a permis d'obtenir des résultats plus rapides et précis. Dans l'ensemble, ces deux stratégies se sont démontrées efficaces pour le screening de gènes issus de divers échantillons. Nous avons pu identifier des nouvelles mutations faux-sens dans le gène SNRNP200, une hélicase ayant une fonction essentielle dans l'épissage. Il est intéressant de noter qu'une des ces mutations montre une pénétrance incomplète dans une famille atteinte d'adRP. Ainsi, nous avons commencé une étude sur les causes moléculaires entrainant des différences phénotypiques entre membres affectés et asymptomatiques de cette famille. Lors de l'étude de l'hypertension, j'ai rejoint un consortium européen pour réaliser une étude d'association Pangénomique ou genome-wide association study Grâce à l'utilisation de tableaux de génotypage très informatifs et de cohortes extrêmement bien caractérisées au niveau phénotypique, un nouveau locus lié à l'hypertension a été identifié dans la région promotrice du gène endothélial nitric oxide sinthase (NOS3). Par ailleurs, nous avons prouvé la cause directe du SNP associé au moyen de trois méthodes différentes: i) en reséquençant la cible avec NGS, ii) avec des essais à la luciférase et iii) une étude de population.
Resumo:
Background: Inflammatory bowel disease (IBD) is characterized by chronic intestinal inflammation due to dysregulation of the mucosal immune system. The cytokines IL-1β and IL-18 appear early in intestinal inflammation and their pro-forms are processed via the caspase-1-activating multiprotein complex, the Nlrp3 inflammasome. Previously, we reported that the uptake of dextran sodium sulfate (DSS) by macrophages activates the Nlrp3 inflammasome and that Nlrp3(-/-) mice are protected in the acute DSS colitis model. Of note, other groups have reported opposing effects in regards to DSS susceptibility in Nlrp3(-/-) mice. Recently, mice lacking inflammasomes were found to develop a distinct intestinal microflora. Methods: To reconcile the contradicting observations, we investigated the role of Nlrp3 deficiency in two different IBD models: acute DSS colitis and TNBS (2,4,6-trinitrobenzene sulfonic acid)-induced colitis. In addition, we investigated the impact of the intestinal flora on disease severity by performing cohousing experiments of wild-type and Nlrp3(-/-) mice, as well as by antibiotic treatment. Results: Nlrp3(-/-) mice treated with either DSS or TNBS exhibited attenuated colitis and lower mortality. This protective effect correlated with an increased frequency of CD103+ lamina propria dendritic cells expressing a tolerogenic phenotype in Nlrp3(-/-) mice in steady state conditions. Interestingly, after cohousing, Nlrp3(-/-) mice were as susceptible as wild-type mice, indicating that transmission of endogenous bacterial flora between the two mouse strains might increase susceptibility of Nlrp3(-/-) mice towards DSS-induced colitis. Accordingly, treatment with antibiotics almost completely prevented colitis in the DSS model. Conclusions: The composition of the intestinal microflora significantly influences disease severity in IBD models comparing wild-type and Nlrp3(-/-) mice. This observation may - at least in part - explain contradictory results concerning the role of the inflammasome in different labs. Further studies are required to define the role of the Nlrp3 inflammasome in noninflamed mucosa under steady state conditions and in IBD.