963 resultados para Functional Magnetic Resonance Imaging (fMRI)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Il est maintenant bien établi que le cerveau humain est doté d’un système de neurones qui s’active tant à la perception qu’à l’exécution d’une action. Les neurones miroirs, ainsi que le système qu’ils forment avec des structures adjacentes appelées système neurones miroirs (SNM), ont été relié à la compréhension d’action et pourrait être impliqué dans les fonctions sociales de haut niveau tel que l’empathie et l’imitation. Dans la foulée spéculative reliant le SNM à la sphère sociale, le dysfonctionnement de ce système a rapidement gagné intérêt dans la genèse des anomalies du domaine social chez les personnes présentant le Trouble du spectre de l’autisme (TSA). Néanmoins, l’hypothèse voulant que le dysfonctionnement social des TSA repose sur une atteinte du SNM est controversée. En effet, les études soutenant cette hypothèse nécessitent des fonctions cognitives et sociales qui peuvent contribuer à l’obtention de résultats atypiques, telles que la compréhension des consignes, l’attention sur des stimuli sociaux ou la réalisation d’acte moteur. Récemment, un protocole auditif de négativité de discordance (MMN) utilisant des stimuli reliés à l’action humaine a été utilisé pour mesurer l’activité du SNM. Cette technique semble prometteuse dans la mesure où elle ne nécessite pas de capacités attentionnelles ou langagières, elle est brève et demande un montage minimal d’électrodes. Le premier article avait comme objectif principal de mesurer la validité de convergence du protocole MMN relié à l’action avec celui du rythme mu, le protocole le plus utilisé pour enregistrer l’activité miroir à l’aide de l’électroencéphalographie (EEG). Les modes de stimulation ont été délivrées en bloc successif à un groupe de 12 adultes en santé. Alors que les deux techniques ont modulé efficacement les régions fronto-centrales et centrales respectivement, mais ne sont pas corrélées, nous avons conclu qu’il est possible 2 qu’elles mesurent des aspects différents du SNM. Le deuxième article avait comme objectif principal de mesurer l’activité du SNM à l’aide du protocole MMN relié à l’action chez 10 enfants présentant un TSA ainsi que chez 12 enfants neurotypiques dans la même tranche d’âge (5-7ans). Chez les enfants TSA, nous avons montré un patron de latence inversée, comparativement aux enfants du groupe contrôle; ils traitaient plus rapidement les sons contrôles que les sons reliés à l’action humaine, alors que la tendance inverse était observée chez les contrôles. De plus, bien que les deux groupes différaient quant aux sons d’action, ils ne différaient pas quant aux sons contrôles. Quant à l’amplitude, les enfants TSA se distinguaient du groupe contrôle par une amplitude restreinte du son d’action provenant de la bouche. Par ailleurs, les mesures neurophysiologiques et neuropsychologiques n’étaient pas corrélées. En sommes, basé sur la prémisse que ce protocole MMN pourrait mesurer l’activité du SNM, cette thèse a comme but d’améliorer les connaissances quant à son utilisation chez l’adulte et l’enfant neurotypique ainsi que chez l’enfant TSA. Celui-ci pourrait ultimement être utilisé comme un biomarqueur potentiel du TSA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Los líderes organizacionales se deben enfrentar a retos ambientales del mundo de los negocios y diversas presiones que los ponen día a día en un alto riesgo ético. Sortear dichos riesgos ha demandado cambios sustanciales en las dinámicas de las organizaciones contemporáneas, por lo que las exigencias a los directivos de tomar decisiones acertadas en situaciones de alta complejidad moral son cada vez mayores. Estas decisiones involucran un comportamiento ético de quien las toma, lo cual a su vez está mediado por sus emociones.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although depressed mood is a normal occurrence in response to adversity in all individuals, what distinguishes those who are vulnerable to major depressive disorder (MDD) is their inability to effectively regulate negative mood when it arises. Investigating the neural underpinnings of adaptive emotion regulation and the extent to which such processes are compromised in MDD may be helpful in understanding the pathophysiology of depression. We report results from a functional magnetic resonance imaging study demonstrating left-lateralized activation in the prefrontal cortex (PFC) when downregulating negative affect in nondepressed individuals, whereas depressed individuals showed bilateral PFC activation. Furthermore, during an effortful affective reappraisal task, nondepressed individuals showed an inverse relationship between activation in left ventrolateral PFC and the amygdala that is mediated by the ventromedial PFC (VMPFC). No such relationship was found for depressed individuals, who instead show a positive association between VMPFC and amygdala. Pupil dilation data suggest that those depressed patients who expend more effort to reappraise negative stimuli are characterized by accentuated activation in the amygdala, insula, and thalamus, whereas nondepressed individuals exhibit the opposite pattern. These findings indicate that a key feature underlying the pathophysiology of major depression is the counterproductive engagement of right prefrontal cortex and the lack of engagement of left lateral-ventromedial prefrontal circuitry important for the downregulation of amygdala responses to negative stimuli.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The response to painful stimulation depends not only on peripheral nociceptive input but also on the cognitive and affective context in which pain occurs. One contextual variable that affects the neural and behavioral response to nociceptive stimulation is the degree to which pain is perceived to be controllable. Previous studies indicate that perceived controllability affects pain tolerance, learning and motivation, and the ability to cope with intractable pain, suggesting that it has profound effects on neural pain processing. To date, however, no neuroimaging studies have assessed these effects. We manipulated the subjects' belief that they had control over a nociceptive stimulus, while the stimulus itself was held constant. Using functional magnetic resonance imaging, we found that pain that was perceived to be controllable resulted in attenuated activation in the three neural areas most consistently linked with pain processing: the anterior cingulate, insular, and secondary somatosensory cortices. This suggests that activation at these sites is modulated by cognitive variables, such as perceived controllability, and that pain imaging studies may therefore overestimate the degree to which these responses are stimulus driven and generalizable across cognitive contexts. [References: 28]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The degree to which perceived controllability alters the way a stressor is experienced varies greatly among individuals. We used functional magnetic resonance imaging to examine the neural activation associated with individual differences in the impact of perceived controllability on self-reported pain perception. Subjects with greater activation in response to uncontrollable (UC) rather than controllable (C) pain in the pregenual anterior cingulate cortex (pACC), periaqueductal gray (PAG), and posterior insula/SII reported higher levels of pain during the UC versus C conditions. Conversely, subjects with greater activation in the ventral lateral prefrontal cortex (VLPFC) in anticipation of pain in the UC versus C conditions reported less pain in response to UC versus C pain. Activation in the VLPFC was significantly correlated with the acceptance and denial subscales of the COPE inventory [Carver, C. S., Scheier, M. F., & Weintraub, J. K. Assessing coping strategies: A theoretically based approach. Journal of Personality and Social Psychology, 56, 267–283, 1989], supporting the interpretation that this anticipatory activation was associated with an attempt to cope with the emotional impact of uncontrollable pain. A regression model containing the two prefrontal clusters (VLPFC and pACC) predicted 64% of the variance in pain rating difference, with activation in the two additional regions (PAG and insula/SII) predicting almost no additional variance. In addition to supporting the conclusion that the impact of perceived controllability on pain perception varies highly between individuals, these findings suggest that these effects are primarily top-down, driven by processes in regions of the prefrontal cortex previously associated with cognitive modulation of pain and emotion regulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Previous functional imaging studies demonstrating amygdala response to happy facial expressions have all included the presentation of negatively valenced primary comparison expressions within the experimental context. This study assessed amygdala response to happy and neutral facial expressions in an experimental paradigm devoid of primary negatively valenced comparison expressions. METHODS: Sixteen human subjects (eight female) viewed 16-sec blocks of alternating happy and neutral faces interleaved with a baseline fixation condition during two functional magnetic resonance imaging scans. RESULTS: Within the ventral amygdala, a negative correlation between happy versus neutral signal changes and state anxiety was observed. The majority of the variability associated with this effect was explained by a positive relationship between state anxiety and signal change to neutral faces. CONCLUSIONS: Interpretation of amygdala responses to facial expressions of emotion will be influenced by considering the contribution of each constituent condition within a greater subtractive finding, as well as 1) their spatial location within the amygdaloid complex; and 2) the experimental context in which they were observed. Here, an observed relationship between state anxiety and ventral amygdala response to happy versus neutral faces was explained by response to neutral faces.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Among younger adults, the ability to willfully regulate negative affect, enabling effective responses to stressful experiences, engages regions of prefrontal cortex (PFC) and the amygdala. Because regions of PFC and the amygdala are known to influence the hypothalamic-pituitary-adrenal axis, here we test whether PFC and amygdala responses during emotion regulation predict the diurnal pattern of salivary cortisol secretion. We also test whether PFC and amygdala regions are engaged during emotion regulation in older (62- to 64-year-old) rather than younger individuals. We measured brain activity using functional magnetic resonance imaging as participants regulated (increased or decreased) their affective responses or attended to negative picture stimuli. We also collected saliva samples for 1 week at home for cortisol assay. Consistent with previous work in younger samples, increasing negative affect resulted in ventral lateral, dorsolateral, and dorsomedial regions of PFC and amygdala activation. In contrast to previous work, decreasing negative affect did not produce the predicted robust pattern of higher PFC and lower amygdala activation. Individuals demonstrating the predicted effect (decrease s attend in the amygdala), however, exhibited higher signal in ventromedial prefrontal cortex (VMPFC) for the same contrast. Furthermore, participants displaying higher VMPFC and lower amygdala signal when decreasing compared with the attention control condition evidenced steeper, more normative declines in cortisol over the course of the day. Individual differences yielded the predicted link between brain function while reducing negative affect in the laboratory and diurnal regulation of endocrine activity in the home environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using functional magnetic resonance imaging, we examined whether individual differences in amygdala activation in response to negative relative to neutral information are related to differences in the speed with which such information is evaluated, the extent to which such differences are associated with medial prefrontal cortex function, and their relationship with measures of trait anxiety and psychological well-being (PWB). Results indicated that faster judgments of negative relative to neutral information were associated with increased left and right amygdala activation. In the prefrontal cortex, faster judgment time was associated with relative decreased activation in a cluster in the ventral anterior cingulate cortex (ACC, BA 24). Furthermore, people who were slower to evaluate negative versus neutral information reported higher PWB. Importantly, higher PWB was strongly associated with increased activation in the ventral ACC for negative relative to neutral information. Individual differences in trait anxiety did not predict variation in judgment time or in amygdala or ventral ACC activity. These findings suggest that people high in PWB effectively recruit the ventral ACC when confronted with potentially aversive stimuli, manifest reduced activity in subcortical regions such as the amygdala, and appraise such information as less salient as reflected in slower evaluative speed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Developmental functional imaging studies of cognitive control show progressive age-related increase in task-relevant fronto-striatal activation in male development from childhood to adulthood. Little is known, however, about how gender affects this functional development. In this study, we used event related functional magnetic resonance imaging to examine effects of sex, age, and their interaction on brain activation during attentional switching and interference inhibition, in 63 male and female adolescents and adults, aged 13 to 38. Linear age correlations were observed across all subjects in task-specific frontal, striatal and temporo-parietal activation. Gender analysis revealed increased activation in females relative to males in fronto-striatal areas during the Switch task, and laterality effects in the Simon task, with females showing increased left inferior prefrontal and temporal activation, and males showing increased right inferior prefrontal and parietal activation. Increased prefrontal activation clusters in females and increased parietal activation clusters in males furthermore overlapped with clusters that were age-correlated across the whole group, potentially reflecting more mature prefrontal brain activation patterns for females, and more mature parietal activation patterns for males. Gender by age interactions further supported this dissociation, revealing exclusive female-specific age correlations in inferior and medial prefrontal brain regions during both tasks, and exclusive male-specific age correlations in superior parietal (Switch task) and temporal regions (Simon task). These findings show increased recruitment of age-correlated prefrontal activation in females, and of age-correlated parietal activation in males, during tasks of cognitive control. Gender differences in frontal and parietal recruitment may thus be related to gender differences in the neurofunctional maturation of these brain regions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Iowa gambling task (IGT) is one of the most influential behavioral paradigms in reward-related decision making and has been, most notably, associated with ventromedial prefrontal cortex function. However, performance in the IGT relies on a complex set of cognitive subprocesses, in particular integrating information about the outcome of choices into a continuously updated decision strategy under ambiguous conditions. The complexity of the task has made it difficult for neuroimaging studies to disentangle the underlying neurocognitive processes. In this study, we used functional magnetic resonance imaging in combination with a novel adaptation of the task, which allowed us to examine separately activation associated with the moment of decision or the evaluation of decision outcomes. Importantly, using whole-brain regression analyses with individual performance, in combination with the choice/outcome history of individual subjects, we aimed to identify the neural overlap between areas that are involved in the evaluation of outcomes and in the progressive discrimination of the relative value of available choice options, thus mapping the two fundamental cognitive processes that lead to adaptive decision making. We show that activation in right ventromedial and dorsolateral prefrontal cortex was predictive of adaptive performance, in both discriminating disadvantageous from advantageous decisions and confirming negative decision outcomes. We propose that these two prefrontal areas mediate shifting away from disadvantageous choices through their sensitivity to accumulating negative outcomes. These findings provide functional evidence of the underlying processes by which these prefrontal subregions drive adaptive choice in the task, namely through contingency-sensitive outcome evaluation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We argue that impulsiveness is characterized by compromised timing functions such as premature motor timing, decreased tolerance to delays, poor temporal foresight and steeper temporal discounting. A model illustration for the association between impulsiveness and timing deficits is the impulsiveness disorder of attention-deficit hyperactivity disorder (ADHD). Children with ADHD have deficits in timing processes of several temporal domains and the neural substrates of these compromised timing functions are strikingly similar to the neuropathology of ADHD. We review our published and present novel functional magnetic resonance imaging data to demonstrate that ADHD children show dysfunctions in key timing regions of prefrontal, cingulate, striatal and cerebellar location during temporal processes of several time domains including time discrimination of milliseconds, motor timing to seconds and temporal discounting of longer time intervals. Given that impulsiveness, timing abnormalities and more specifically ADHD have been related to dopamine dysregulation, we tested for and demonstrated a normalization effect of all brain dysfunctions in ADHD children during time discrimination with the dopamine agonist and treatment of choice, methylphenidate. This review together with the new empirical findings demonstrates that neurocognitive dysfunctions in temporal processes are crucial to the impulsiveness disorder of ADHD and provides first evidence for normalization with a dopamine reuptake inhibitor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study investigated the premise that individual differences in autonomic physiology could be used to specify the nature and consequences of information processing taking place in medial prefrontal regions during cognitive reappraisal of unpleasant pictures. Neural (blood oxygenation level-dependent functional magnetic resonance imaging) and autonomic (electrodermal [EDA], pupil diameter, cardiac acceleration) signals were recorded simultaneously as twenty-six older people (ages 64–66 years) used reappraisal to increase, maintain, or decrease their responses to unpleasant pictures. EDA was higher when increasing and lower when decreasing compared to maintaining. This suggested modulation of emotional arousal by reappraisal. By contrast, pupil diameter and cardiac acceleration were higher when increasing and decreasing compared to maintaining. This suggested modulation of cognitive demand. Importantly, reappraisal-related activation (increase, decrease > maintain) in two medial prefrontal regions (dorsal medial frontal gyrus and dorsal cingulate gyrus) was correlated with greater cardiac acceleration (increase, decrease > maintain) and monotonic changes in EDA (increase > maintain > decrease). These data indicate that these two medial prefrontal regions are involved in the allocation of cognitive resources to regulate unpleasant emotion, and that they modulate emotional arousal in accordance with the regulatory goal. The emotional arousal effects were mediated by the right amygdala. Reappraisal-related activation in a third medial prefrontal region (subgenual anterior cingulate cortex) was not associated with similar patterns of change in any of the autonomic measures, thus highlighting regional specificity in the degree to which cognitive demand is reflected in medial prefrontal activation during reappraisal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The 'self' is a complex multidimensional construct deeply embedded and in many ways defined by our relations with the social world. Individuals with autism are impaired in both self-referential and other-referential social cognitive processing. Atypical neural representation of the self may be a key to understanding the nature of such impairments. Using functional magnetic resonance imaging we scanned adult males with an autism spectrum condition and age and IQ-matched neurotypical males while they made reflective mentalizing or physical judgements about themselves or the British Queen. Neurotypical individuals preferentially recruit the middle cingulate cortex and ventromedial prefrontal cortex in response to self compared with other-referential processing. In autism, ventromedial prefrontal cortex responded equally to self and other, while middle cingulate cortex responded more to other-mentalizing than self-mentalizing. These atypical responses occur only in areas where self-information is preferentially processed and does not affect areas that preferentially respond to other-referential information. In autism, atypical neural self-representation was also apparent via reduced functional connectivity between ventromedial prefrontal cortex and areas associated with lower level embodied representations, such as ventral premotor and somatosensory cortex. Furthermore, the magnitude of neural self-other distinction in ventromedial prefrontal cortex was strongly related to the magnitude of early childhood social impairments in autism. Individuals whose ventromedial prefrontal cortex made the largest distinction between mentalizing about self and other were least socially impaired in early childhood, while those whose ventromedial prefrontal cortex made little to no distinction between mentalizing about self and other were the most socially impaired in early childhood. These observations reveal that the atypical organization of neural circuitry preferentially coding for self-information is a key mechanism at the heart of both self-referential and social impairments in autism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The amygdala is consistently implicated in biologically relevant learning tasks such as Pavlovian conditioning. In humans, the ability to identify individual faces based on the social outcomes they have predicted in the past constitutes a critical form of associative learning that can be likened to “social conditioning.” To capture such learning in a laboratory setting, participants learned about faces that predicted negative, positive, or neutral social outcomes. Participants reported liking or disliking the faces in accordance with their learned social value. During acquisition, we observed differential functional magnetic resonance imaging activation across the human amygdaloid complex consistent with previous lesion, electrophysiological, and functional neuroimaging data. A region of the medial ventral amygdala and a region of the dorsal amygdala/substantia innominata showed signal increases to both Negative and Positive faces, whereas a lateral ventral region displayed a linear representation of the valence of faces such that Negative > Positive > Neutral. This lateral ventral locus also differed from the dorsal and medial loci in that the magnitude of these responses was more resistant to habituation. These findings document a role for the human amygdala in social learning and reveal coarse regional dissociations in amygdala activity that are consistent with previous human and nonhuman animal data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Evidence suggests a reversal of the normal left-lateralised response to speech in schizophrenia. Aims To test the brain's response to emotional prosody in schizophrenia and bipolar disorder. Method BOLD contrast functional magnetic resonance imaging of subjects while they passively listened or attended to sentences that differed in emotional prosody Results Patients with schizophrenia exhibited normal right-lateralisation of the passive response to 'pure' emotional prosody and relative left-lateralisation of the response to unfiltered emotional prosody When attending to emotional prosody, patients with schizophrenia activated the left insula more than healthy controls. When listening passively, patients with bipolar disorder demonstrated less activation of the bilateral superior temporal gyri in response to pure emotional prosody, and greater activation of the left superior temporal gyrus in response to unfiltered emotional prosody In both passive experiments, the patient groups activated different lateral temporal lobe regions. Conclusions Patients with schizophrenia and bipolar disorder may display some left-lateralisation of the normal right-lateralised temporal lobe response to emotional prosody. Declaration of interest R.M. received a studentship from Neuraxis,, and funding from the Neuroscience and Psychiatry Unit, University of Manchester.