987 resultados para Full bridge converters


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, Structural Health Monitoring (SHM) systems have been developed to monitor bridge deterioration, assess real load levels and hence extend bridge life and safety. A road bridge is only safe if the stresses caused by the passing vehicles are less than the capacity of the bridge to resist them. Conventional SHM systems can be used to improve knowledge of the bridges capacity to resist stresses but generally give no information on the causes of any increase in stresses (based on measuring strain). The concept of in Bridge Weigh-in-Motion (B-WIM) is to establish axle loads, without interruption to traffic flow, by using strain sensors at a bridge soffit and subsequently converting the data to real time axle loads or stresses. Recent studies have shown it would be most beneficial to develop a portable system which can be easily attached to existing and new bridge structures for a specified monitoring period. The sensors could then be left in place while the data acquisition can be moved for various other sites. Therefore it is necessary to find accurate sensors capable of capturing peak strains under dynamic load and suitable methods for attaching these strain sensors to existing and new bridge structures. Additionally, it is important to ensure accurate strain transfer between concrete and steel, the adhesives layer and the strain sensor. This paper describes research investigating the suitably of using various sensors for the monitoring of concrete structures under dynamic vehicle load. Electrical resistance strain (ERS) gauges, vibrating wire (VW) gauges and fibre optic sensors (FOS) are commonly used for SHM. A comparative study will be carried out to select a suitable sensor for a bridge Weigh in Motion System. This study will look at fixing methods, durability, scanning rate and accuracy range. Finite element modeling is used to predict the strains which are then validated in laboratory trials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Masonry arch bridges are one of the oldest forms of bridge construction and have been around for thousands of years. Brick and stone arch bridges have proven to be highly durable as most of them have remained serviceable after hundreds of years. In contrast, many bridges built of modern materials have required extensive repair and strengthening after being in service for a relatively short part of their design life. This paper describes the structural monitoring of a novel flexible concrete arch known as: FlexiArchTM. This is a bridge system that can be transported as a flat-pack system to form an arch in-situ by the use of a flexible polymeric membrane. The system has been developed under a Knowledge Transfer Partnership between Queen’s University Belfast (QUB) and Macrete Ltd. Tievenameena Bridge in Northern Ireland was a replacement bridge for the Northern Ireland Roads Service and was monitored under different axle loadings using a range of sensors including discrete fiber optic Bragg gratings to measure the change in strain in the arch ring under live loading. This paper discusses the results of a laboratory model study carried out at QUB. A scaled arch system was loaded with a simulated moving axle. Various techniques were used to monitor the arch under the moving axle load with particular emphasis on the interaction of the arch ring and engineered backfill.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bridge weigh-in-motion (B-WIM), a system that uses strain sensors to calculate the weights of trucks passing on bridges overhead, requires accurate axle location and speed information for effective performance. The success of a B-WIM system is dependent upon the accuracy of the axle detection method. It is widely recognised that any form of axle detector on the road surface is not ideal for B-WIM applications as it can cause disruption to the traffic (Ojio & Yamada 2002; Zhao et al. 2005; Chatterjee et al. 2006). Sensors under the bridge, that is Nothing-on-Road (NOR) B-WIM, can perform axle detection via data acquisition systems which can detect a peak in strain as the axle passes. The method is often successful, although not all bridges are suitable for NOR B-WIM due to limitations of the system. Significant research has been carried out to further develop the method and the NOR algorithms, but beam-and-slab bridges with deep beams still present a challenge. With these bridges, the slabs are used for axle detection, but peaks in the slab strains are sensitive to the transverse position of wheels on the beam. This next generation B-WIM research project extends the current B-WIM algorithm to the problem of axle detection and safety, thus overcoming the existing limitations in current state-of–the-art technology. Finite Element Analysis was used to determine the critical locations for axle detecting sensors and the findings were then tested in the field. In this paper, alternative strategies for axle detection were determined using Finite Element analysis and the findings were then tested in the field. The site selected for testing was in Loughbrickland, Northern Ireland, along the A1 corridor connecting the two cities of Belfast and Dublin. The structure is on a central route through the island of Ireland and has a high traffic volume which made it an optimum location for the study. Another huge benefit of the chosen location was its close proximity to a nearby self-operated weigh station. To determine the accuracy of the proposed B-WIM system and develop a knowledge base of the traffic load on the structure, a pavement WIM system was also installed on the northbound lane on the approach to the structure. The bridge structure selected for this B-WIM research comprised of 27 pre-cast prestressed concrete Y4-beams, and a cast in-situ concrete deck. The structure, a newly constructed integral bridge, spans 19 m and has an angle of skew of 22.7°.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES: The Shape of Training report recommended that full registration is aligned with medical school graduation. As part of a General Medical Council-funded study about the preparedness for practice of UK medical graduates, we explored UK stakeholders' views about this proposal using qualitative interviews (30 group and 87 individual interviews) and Framework Analysis.

SETTING: Four UK study sites, one in each country.Save

PARTICIPANTS: 185 individuals from eight stakeholder groups: (1) foundation year 1 (F1) doctors (n=34); (2) fully registered trainee doctors (n=33); (3) clinical educators (n=32); (4) undergraduate/postgraduate Deans, and Foundation Programme Directors (n=30); (5) other healthcare professionals (n=13); (6) employers (n=7); (7) policy and government (n=11); (8) patient and public representatives (n=25).

RESULTS: We identified four main themes: (1) The F1 year as a safety net: patients were protected by close trainee supervision and 'sign off' to prevent errors; trainees were provided with a safe environment for learning on the job; (2) Implications for undergraduate medical education: if the proposal was accepted, a 'radical review' of undergraduate curricula would be needed; undergraduate education might need to be longer; (3) Implications for F1 work practice: steps to protect healthcare team integration and ensure that F1 doctors stay within competency limits would be required; (4) Financial, structural and political implications: there would be cost implications for trainees; clarification of responsibilities between undergraduate and postgraduate medical education would be needed. Typically, each theme comprised arguments for and against the proposal.

CONCLUSIONS: A policy change to align the timing of full registration with graduation would require considerable planning and preliminary work. These findings will inform policymakers' decision-making. Regardless of the decision, medical students should take on greater responsibility for patient care as undergraduates, assessment methods in clinical practice and professionalism domains need development, and good practice in postgraduate supervision and support must be shared.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates a low-cost wavelet-based approach for the preliminary monitoring of bridge structures, consisting of the use of a vehicle fitted with accelerometers on its axles. The approach aims to reduce the need for direct instrumentation of the bridge. A time-frequency analysis is carried out in order to identify the existence and location of damage from vehicle accelerations. Firstly, in theoretical simulations, a simplified vehicle-bridge interaction model is used to investigate the effectiveness of the approach. A number of damage indicators are evaluated and compared. A range of parameters such as the bridge span, vehicle speed, damage level and location, signal noise and road roughness are varied in simulations. Secondly, a scaled laboratory experiment is carried out to validate the results of the theoretical analysis and assess the ability of the selected damage indicators to detect changes in the bridge response from vehicle accelerations. 

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Damage detection in bridges using vibration-based methods is an area of growing research interest. Improved assessment
methodologies combined with state-of-the-art sensor technology are rapidly making these approaches applicable for real-world
structures. Applying these techniques to the detection and monitoring of scour around bridge foundations has remained
challenging; however this area has gained attraction in recent years. Several authors have investigated a range of methods but
there is still significant work required to achieve a rounded and widely applicable methodology to detect and monitor scour.This
paper presents a novel Vehicle-Bridge-Soil Dynamic Interaction (VBSDI) model which can be used to simulate the effect of scour
on an integral bridge. The model outputs dynamic signals which can be analysed to determine modal parameters and the variation
of these parameters with respect to scour can be examined.The key novelty of this model is that it is the first numerical model for
simulating scour that combines a realistic vehicle loadingmodel with a robust foundation soil responsemodel.This paper provides a
description of the model development and explains the mathematical theory underlying themodel. Finally a case study application
of the model using typical bridge, soil, and vehicle properties is provided.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper demonstrates the unparalleled value of full scale data which has been acquired from ocean trials of Aquamarine Power’s Oyster 800 Wave Energy Converter (WEC) at the European Marine Energy Centre (EMEC), Orkney, Scotland.
High quality prototype and wave data were simultaneously recorded in over 750 distinct sea states (comprising different wave height, wave period and tidal height combinations) and include periods of operation where the hydraulic Power Take-Off (PTO) system was both pressurised (damped operation) and de-pressurised (undamped operation).
A detailed model-prototype correlation procedure is presented where the full scale prototype behaviour is compared to predictions from both experimental and numerical modelling techniques via a high temporal resolution wave-by-wave reconstruction. This unquestionably provides the definitive verification of the capabilities of such research techniques and facilitates a robust and meaningful uncertainty analysis to be performed on their outputs.
The importance of a good data capture methodology, both in terms of handling and accuracy is also presented. The techniques and procedures implemented by Aquamarine Power for real-time data management are discussed, including lessons learned on the instrumentation and infrastructure required to collect high-value data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bridge scour is the number one cause of failure in bridges located over waterways. Scour leads to rapid losses in foundation stiffness and can cause sudden collapse. Previous research on bridge health monitoring has used changes in natural frequency to identify damage in bridge beams. The possibility of using a similar approach to identifying scour is investigated in this paper. To assess if this approach is feasible, it is necessary to establish how scour affects the natural frequency of a bridge, and if it is possible to measure changes in frequency using the bridge dynamic response to a passing vehicle. To address these questions, a novel vehicle–bridge–soil interaction (VBSI) model was developed. By carrying out a modal study in this model, it is shown that for a wide range of possible soil states, there is a clear reduction in the natural frequency of the first mode of the bridge with scour. Moreover, it is shown that the response signals on the bridge from vehicular loading are sufficient to allow these changes in frequency to be detected.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effectiveness of a novel Post-Tensioned Metal Strapping (PTMS) technique at enhancing the seismic behaviour of a substandard RC building was investigated through full-scale shake-table tests during the EU-funded project BANDIT. The building had inadequate reinforcement detailing in columns and joints to replicate old construction practices. After the bare building was initially damaged significantly, it was repaired and strengthened with PTMS to perform additional seismic tests. The PTMS technique improved considerably the seismic performance of the tested building. Whilst the bare building experienced critical damage at an earthquake of PGA=0.15g, the PTMS-strengthened building sustained a PGA=0.35g earthquake without compromising stability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A cDNA library prepared from human liver was screened for α₁-antitrypsin, a major constituent of plasma which functions as inhibitor of proteolytic enzyms. The library was screened using a 12-base-long synthetic oligodeoxyribonucleotide corresponding to a known DNA fragment of human α₁-antitrypsin and by hybrid-selection of α₁-antitrypsin mRNA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Among the various proteins which are induced when human cells are are treatened with interferon, a predominant protein of unknown function, with molecular mass 56 kDa, has been observed. With the aim of exploring the molecular basis of the regulation of this protein and of its mRNA, in order to understand its biological functionand its possible contribution to the various antiviral and non-antiviral actions exerted by interferons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The South Carolina Department of Natural Resources provides maps to recreational and state shellfish grounds, available to the public for recreational harvesting or to commercial harvest. This map shows the location of Wando River S248 (Above Hwy 41 Bridge) Recreational Shellfish Ground in Charleston County.