958 resultados para Forecast densities
Resumo:
Methane is a potent greenhouse gas with a global warming potential ∼28 times that of carbon dioxide. Consequently, sources and sinks that influence the concentration of methane in the atmosphere are of great interest. In Australia, agriculture is the primary source of anthropogenic methane emissions (60.4% of national emissions, or 3260kt-1methaneyear-1, between 1990 and 2011), and cropping and grazing soils represent Australia's largest potential terrestrial methane sink. As of 2011, the expansion of agricultural soils, which are ∼70% less efficient at consuming methane than undisturbed soils, to 59% of Australia's land mass (456Mha) and increasing livestock densities in northern Australia suggest negative implications for national methane flux. Plant biomass burning does not appear to have long-term negative effects on methane flux unless soils are converted for agricultural purposes. Rice cultivation contributes marginally to national methane emissions and this fluctuates depending on water availability. Significant available research into biological, geochemical and agronomic factors has been pertinent for developing effective methane mitigation strategies. We discuss methane-flux feedback mechanisms in relation to climate change drivers such as temperature, atmospheric carbon dioxide and methane concentrations, precipitation and extreme weather events. Future research should focus on quantifying the role of Australian cropping and grazing soils as methane sinks in the national methane budget, linking biodiversity and activity of methane-cycling microbes to environmental factors, and quantifying how a combination of climate change drivers will affect total methane flux in these systems.
Resumo:
Thaumastocoris peregrinus is a sap-sucking insect that infests non-native Eucalyptus plantations in Africa, New Zealand, South America and parts of Southern Europe, in addition to street trees in parts of its native range of Australia. In South Africa, pronounced fluctuations in the population densities have been observed. To characterise spatiotemporal variability in T. peregrinus abundance and the factors that might influence it, we monitored adult population densities at six sites in the main eucalypt growing regions of South Africa. At each site, twenty yellow sticky traps were monitored weekly for 30 months, together with climatic data. We also characterised the influence of temperature on growth and survival experimentally and used this to model how temperature may influence population dynamics. T. peregrinus was present throughout the year at all sites, with annual site-specific peaks in abundance. Peaks occurred during autumn (February–April) for the Pretoria site, summer (November–January) for the Zululand site and spring (August–October) for the Tzaneen, Sabie and Piet Retief monitoring sites. Temperature (both experimental and field-collected), humidity and rainfall were mostly weakly, or not at all, associated with population fluctuations. It is clear that a complex interaction of these and other factors (e.g. host quality) influence population fluctuations in an annual, site specific cycle. The results obtained not only provide insights into the biology of T. peregrinus, but will also be important for future planning of monitoring and control programs using semiochemicals, chemical insecticides or biological control agents.
Resumo:
Individual movement is very versatile and inevitable in ecology. In this thesis, I investigate two kinds of movement body condition dependent dispersal and small-range foraging movements resulting in quasi-local competition and their causes and consequences on the individual, population and metapopulation level. Body condition dependent dispersal is a widely evident but barely understood phenomenon. In nature, diverse relationships between body condition and dispersal are observed. I develop the first models that study the evolution of dispersal strategies that depend on individual body condition. In a patchy environment where patches differ in environmental conditions, individuals born in rich (e.g. nutritious) patches are on average stronger than their conspecifics that are born in poorer patches. Body condition (strength) determines competitive ability such that stronger individuals win competition with higher probability than weak individuals. Individuals compete for patches such that kin competition selects for dispersal. I determine the evolutionarily stable strategy (ESS) for different ecological scenarios. My models offer explanations for both dispersal of strong individuals and dispersal of weak individuals. Moreover, I find that within-family dispersal behaviour is not always reflected on the population level. This supports the fact that no consistent pattern is detected in data on body condition dependent dispersal. It also encourages the refining of empirical investigations. Quasi-local competition defines interactions between adjacent populations where one population negatively affects the growth of the other population. I model a metapopulation in a homogeneous environment where adults of different subpopulations compete for resources by spending part of their foraging time in the neighbouring patches, while their juveniles only feed on the resource in their natal patch. I show that spatial patterns (different population densities in the patches) are stable only if one age class depletes the resource very much but mainly the other age group depends on it.
Resumo:
A survey was conducted in central inland Queensland, Australia of 108 sites that were deemed to contain Aristida/Bothriochloa native pastures to quantitatively describe the pastures and attempt to delineate possible sub-types. The pastures were described in terms of their floristic composition, plant density and crown cover. There were generally ~20 (range 5–33) main pasture species at a site. A single dominant perennial grass was rare with three to six prominent species the norm. Chrysopogon fallax (golden-beard grass) was the perennial grass most consistently found in all pastures whereas Aristida calycina (dark wiregrass), Enneapogon spp. (bottlewasher grasses), Brunoniella australis (blue trumpet) and Panicum effusum (hairy panic) were all regularly present. The pastures did not readily separate into broad floristic sub-groups, but three groups that landholders could recognise from a combination of the dominant tree and soil type were identified. The three groups were Eucalyptus crebra (narrow-leaved ironbark), E. melanophloia (silver-leaved ironbark) and E. populnea (poplar box). The pastures of the three main sub-groups were then characterised by the prominent presence, singly or in combination, of Bothriochloa ewartiana (desert bluegrass), Eremochloa bimaculata (poverty grass), Bothriochloa decipiens (pitted bluegrass) or Heteropogon contortus (black speargrass). The poplar box group had the greatest diversity of prominent grasses whereas the narrow-leaved ironbark group had the least. Non-native Cenchrus ciliaris (buffel grass) and Melinis repens (red Natal grass) were generally present at low densities. Describing pastures in terms of frequency of a few species or species groups sometimes failed to capture the true nature of the pasture but plant abundance for most species, as density, herbage mass of dry matter or plant crown cover, was correlated with its recorded frequency. A quantitative description of an average pasture in fair condition is provided but it was not possible to explain why some species often occur together or fail to co-exist in Aristida/Bothriochloa pastures, for example C. ciliaris and E. bimaculata rarely co-exist whereas Tragus australianus (small burrgrass) and Enneapogon spp. are frequently recorded together. Most crown cover was provided by perennial grasses but many of these are Aristida spp. (wiregrasses) and not regarded as useful forage for livestock. No new or improved categorisation of the great variation evident in the Aristida/Bothriochloa native pasture type can be given despite the much improved detail provided of the floristic composition by this survey.
Resumo:
Cyperus iria is a weed of rice with widespread occurrence throughout the world. Because of concerns about excessive and injudicious use of herbicides, cultural weed management approaches that are safe and economical are needed. Developing such approaches will require a better understanding of weed biology and ecology, as well as of weed response to increases in crop density and nutrition. Knowledge of the effects of nitrogen (N) fertilizer on crop-weed competitive interactions could also help in the development of integrated weed management strategies. The present study was conducted in a screenhouse to determine the effects of rice planting density (0, 5, 10, and 20 plants pot−1) and N rate (0, 50, 100, and 150 kg ha−1) on the growth of C. iria. Tiller number per plant decreased by 73–88%, leaf number by 85–94%, leaf area by 85–98%, leaf biomass by 92–99%, and inflorescence biomass by 96–99% when weed plants were grown at 20 rice plants pot−1 (i.e., 400 plants m−2) compared with weed plants grown alone. All of these parameters increased when N rates were increased. On average, weed biomass increased by 118–389% and rice biomass by 121–275% with application of 50–150 kg N ha−1, compared to control. Addition of N favored weed biomass production relative to rice biomass. Increased N rates reduced the root-to-shoot weight ratio of C. iria. Rice interference reduced weed growth and biomass and completely suppressed C. iria when no N was applied at high planting densities (i.e., 20 plants pot−1). The weed showed phenotypic plasticity in response to N application, and the addition of N increased the competitive ability of the weed over rice at densities of 5 and 10 rice plants pot−1 compared with 20 plants pot−1. The results of the present study suggest that high rice density (i.e., 400 plants m−2) can help suppress C. iria growth even at high N rates (150 kg ha−1).
Resumo:
This paper discusses the role of mango canopy architecture in mango productivity and orchard management and considers potential increases on production of high density orchards through improved canopy architecture. Lower tree height, reduced vigour and smaller more open canopies are recognised as important aspects of high density orchards. However, vigour management, light relations, flowering and crop load of high density orchards needs to be better understood if we are to developed sustainable highly productive canopy training and pruning systems that are easy to maintain at high planting densities.
Resumo:
AbstractObjectives Decision support tools (DSTs) for invasive species management have had limited success in producing convincing results and meeting users' expectations. The problems could be linked to the functional form of model which represents the dynamic relationship between the invasive species and crop yield loss in the DSTs. The objectives of this study were: a) to compile and review the models tested on field experiments and applied to DSTs; and b) to do an empirical evaluation of some popular models and alternatives. Design and methods This study surveyed the literature and documented strengths and weaknesses of the functional forms of yield loss models. Some widely used models (linear, relative yield and hyperbolic models) and two potentially useful models (the double-scaled and density-scaled models) were evaluated for a wide range of weed densities, maximum potential yield loss and maximum yield loss per weed. Results Popular functional forms include hyperbolic, sigmoid, linear, quadratic and inverse models. Many basic models were modified to account for the effect of important factors (weather, tillage and growth stage of crop at weed emergence) influencing weed–crop interaction and to improve prediction accuracy. This limited their applicability for use in DSTs as they became less generalized in nature and often were applicable to a much narrower range of conditions than would be encountered in the use of DSTs. These factors' effects could be better accounted by using other techniques. Among the model empirically assessed, the linear model is a very simple model which appears to work well at sparse weed densities, but it produces unrealistic behaviour at high densities. The relative-yield model exhibits expected behaviour at high densities and high levels of maximum yield loss per weed but probably underestimates yield loss at low to intermediate densities. The hyperbolic model demonstrated reasonable behaviour at lower weed densities, but produced biologically unreasonable behaviour at low rates of loss per weed and high yield loss at the maximum weed density. The density-scaled model is not sensitive to the yield loss at maximum weed density in terms of the number of weeds that will produce a certain proportion of that maximum yield loss. The double-scaled model appeared to produce more robust estimates of the impact of weeds under a wide range of conditions. Conclusions Previously tested functional forms exhibit problems for use in DSTs for crop yield loss modelling. Of the models evaluated, the double-scaled model exhibits desirable qualitative behaviour under most circumstances.
Resumo:
Summer in the Persian Gulf region presents physiological challenges for Australian sheep that are part of the live export supply chain coming from the Australian winter. Many feedlots throughout the Gulf have very high numbers of animals during June to August in order to cater for the increased demand for religious festivals. From an animal welfare perspective it is important to understand the necessary requirements of feed and water trough allowances, and the amount of pen space required, to cope with exposure to these types of climatic conditions. This study addresses parameters that are pertinent to the wellbeing of animals arriving in the Persian Gulf all year round. Three experiments were conducted in a feedlot in the Persian Gulf between March 2010 and February 2012, totalling 44 replicate pens each with 60 or 100 sheep. The applied treatments covered animal densities, feed-bunk lengths and water trough lengths. Weights, carcass attributes and health status were the key recorded variables. Weight change results showed superior performance for animal densities of ≥1.2 m2/head during hot conditions (24-h average temperatures greater than 33 °C, or a diurnal range of around 29–37 °C). However the space allowance for animals can be decreased, with no demonstrated detrimental effect, to 0.6 m2/head under milder conditions. A feed-bunk length of ≥5 cm/head is needed, as 2 cm/head showed significantly poorer animal performance. When feeding at 90 ad libitum 10 cm/head was optimal, however under a maintenance feeding regime (1 kg/head/day) 5 cm/head was adequate. A minimum water trough allowance of 1 cm/head is required. However, this experiment was conducted during milder conditions, and it may well be expected that larger water trough lengths would be needed in hotter conditions. Carcass weights were determined mainly by weights at feedlot entry and subsequent weight gains, while dressing percentage was not significantly affected by any of the applied treatments. There was no demonstrated effect of any of the treatments on the number of animals that died, or were classified as unwell. However, across all the treatments, these animals lost significantly more weight than the healthy animals, so the above recommendations, which are aimed at maintaining weight, should also be applicable for good animal health and welfare. Therefore, best practice guidelines for managing Australian sheep in Persian Gulf feedlots in the hottest months (June–August) which present the greatest environmental and physical challenge is to allow feed-bunk length 5 cm/head on a maintenance-feeding program and 10 cm/head for 90 ad libitum feeding, and the space allowance per animal should be ≥1.2 m2/head. Water trough allocation should be at least 1 cm/head with provision for more in the summer when water intake potentially doubles.
Resumo:
We investigate the role of plant species in crops, pasture and native vegetation remnants in supporting agronomic pests and their predators. The study was conducted in three Australian States and across 290 sites sampled monthly for two years. Pastures played a key role in harbouring pest species consistent across States, while native vegetation hosted relatively more predators than other habitat types within each State. Furthermore, native plant species supported the lowest pest density and more predators than pests; in contrast, 75 of the exotic weed species surveyed hosted more pests than predators. Despite the role of pasture in harbouring pests, we found in NSW that pasture also supported the highest proportion of juvenile predators, while native vegetation remnants had the lowest. Our results indicate that non-crop habitat (native remnants or pasture) with few exotic weeds supports high predator and low pest arthropod densities, and that weeds are associated with high pest densities. By linking broad response variables such as ‘all pests’ with specific predictors such as ‘plant species’, our study will inform on-farm management actions of which weeds to control and which natives to plant or regenerate. This study shows the importance of knowing the function of habitats and plants species in supporting pests and predators in agricultural landscapes across multiple regions.
Resumo:
In this study, we investigated the extent and physiological bases of yield variation due to row spacing and plant density configuration in the mungbean Vigna radiata (L.) Wilczek variety “Crystal” grown in different subtropical environments. Field trials were conducted in six production environments; one rain-fed and one irrigated trial each at Biloela and Emerald, and one rain-fed trial each at Hermitage and Kingaroy sites in Queensland, Australia. In each trial, six combinations of spatial arrangement of plants, achieved through two inter-row spacings of 1 m or 0.9 m (wide row), 0.5 m or 0.3 m (narrow row), with three plant densities, 20, 30 and 40 plants/m2, were compared. The narrow row spacing resulted in 22% higher shoot dry matter and 14% more yield compared to the wide rows. The yield advantage of narrow rows ranged from 10% to 36% in the two irrigated and three rain-fed trials. However, yield loss of up to 10% was also recorded from narrow rows at Emerald where the crop suffered severe drought. Neither the effects of plant density, nor the interaction between plant density and row spacing, however, were significant in any trial. The yield advantage of narrow rows was related to 22% more intercepted radiation. In addition, simulations by the Agricultural Production Systems Simulator model, using site-specific agronomy, soil and weather information, suggested that narrow rows had proportionately greater use of soil water through transpiration, compared to evaporation resulting in higher yield per mm of soil water. The long-term simulation of yield probabilities over 123 years for the two row configurations showed that the mungbean crop planted in narrow rows could produce up to 30% higher grain yield compared to wide rows in 95% of the seasons.
Resumo:
Summer in the Persian Gulf region presents physiological challenges for Australian sheep that are part of the live export supply chain coming from the Australian winter. Many feedlots throughout the Gulf have very high numbers of animals during June to August in order to cater for the increased demand for religious festivals. From an animal welfare perspective it is important to understand the necessary requirements of feed and water trough allowances, and the amount of pen space required, to cope with exposure to these types of climatic conditions. This study addresses parameters that are pertinent to the wellbeing of animals arriving in the Persian Gulf all year round. Three experiments were conducted in a feedlot in the Persian Gulf between March 2010 and February 2012, totalling 44 replicate pens each with 60 or 100 sheep. The applied treatments covered animal densities, feed-bunk lengths and water trough lengths. Weights, carcass attributes and health status were the key recorded variables. Weight change results showed superior performance for animal densities of ≥1.2 m2/head during hot conditions (24-h average temperatures greater than 33 °C, or a diurnal range of around 29–37 °C). However the space allowance for animals can be decreased, with no demonstrated detrimental effect, to 0.6 m2/head under milder conditions. A feed-bunk length of ≥5 cm/head is needed, as 2 cm/head showed significantly poorer animal performance. When feeding at 90% ad libitum 10 cm/head was optimal, however under a maintenance feeding regime (1 kg/head/day) 5 cm/head was adequate. A minimum water trough allowance of 1 cm/head is required. However, this experiment was conducted during milder conditions, and it may well be expected that larger water trough lengths would be needed in hotter conditions. Carcass weights were determined mainly by weights at feedlot entry and subsequent weight gains, while dressing percentage was not significantly affected by any of the applied treatments. There was no demonstrated effect of any of the treatments on the number of animals that died, or were classified as unwell. However, across all the treatments, these animals lost significantly more weight than the healthy animals, so the above recommendations, which are aimed at maintaining weight, should also be applicable for good animal health and welfare. Therefore, best practice guidelines for managing Australian sheep in Persian Gulf feedlots in the hottest months (June–August) which present the greatest environmental and physical challenge is to allow feed-bunk length 5 cm/head on a maintenance-feeding program and 10 cm/head for 90% ad libitum feeding, and the space allowance per animal should be ≥1.2 m2/head. Water trough allocation should be at least 1 cm/head with provision for more in the summer when water intake potentially doubles.
Resumo:
Maize grown in eastern and southern Africa experiences random occurrences of drought. This uncertainty creates difficulty in developing superior varieties and their agronomy. Characterisation of drought types and their frequencies could help in better defining selection environments for improving resistance to drought. We used the well tested APSIM maize model to characterise major drought stress patterns and their frequencies across six countries of the region including Ethiopia, Kenya, Tanzania, Malawi, Mozambique and Zimbabwe. The database thus generated covered 35 sites, 17 to 86 years of daily climate records, 3 varieties and 3 planting densities from a total of 11,174 simulations. The analysis identified four major drought environment types including those characterised by low-stress which occurred in 42% of the years, mid-season drought occurring in 15% of the years, late-terminal stress which occurred in 22% of the years and early-terminal drought occurring in 21% of the years. These frequencies varied in relation to sites, genotypes and management. The simulations showed that early terminal stress could result in a yield reduction of 70% compared with low-stress environmental types. The study presents the importance of environmental characterization in contributing to maize improvement in eastern and southern Africa.
Resumo:
Few data exist on direct greenhouse gas emissions from pen manure at beef feedlots. However, emission inventories attempt to account for these emissions. This study used a large chamber to isolate N2O and CH4 emissions from pen manure at two Australian commercial beef feedlots (stocking densities, 13-27 m(2) head) and related these emissions to a range of potential emission control factors, including masses and concentrations of volatile solids, NO3-, total N, NH4+, and organic C (OC), and additional factors such as total manure mass, cattle numbers, manure pack depth and density, temperature, and moisture content. Mean measured pen N2O emissions were 0.428 kg ha(-1) d(-1) (95% confidence interval [CI], 0.252-0.691) and 0.00405 kg ha(-1) d(-1) (95% CI, 0.00114-0.0110) for the northern and southern feedlots, respectively. Mean measured CH4 emission was 0.236 kg ha(-1) d(-1) (95% CI, 0.163-0.332) for the northern feedlot and 3.93 kg ha(-1) d(-1) (95% CI, 2.58-5.81) for the southern feedlot. Nitrous oxide emission increased with density, pH, temperature, and manure mass, whereas negative relationships were evident with moisture and OC. Strong relationships were not evident between N2O emission and masses or concentrations of NO3- or total N in the manure. This is significant because many standard inventory calculation protocols predict N2O emissions using the mass of N excreted by the animal.
Resumo:
Much of our understanding and management of ecological processes requires knowledge of the distribution and abundance of species. Reliable abundance or density estimates are essential for managing both threatened and invasive populations, yet are often challenging to obtain. Recent and emerging technological advances, particularly in unmanned aerial vehicles (UAVs), provide exciting opportunities to overcome these challenges in ecological surveillance. UAVs can provide automated, cost-effective surveillance and offer repeat surveys for pest incursions at an invasion front. They can capitalise on manoeuvrability and advanced imagery options to detect species that are cryptic due to behaviour, life-history or inaccessible habitat. UAVs may also cause less disturbance, in magnitude and duration, for sensitive fauna than other survey methods such as transect counting by humans or sniffer dogs. The surveillance approach depends upon the particular ecological context and the objective. For example, animal, plant and microbial target species differ in their movement, spread and observability. Lag-times may exist between a pest species presence at a site and its detectability, prompting a need for repeat surveys. Operationally, however, the frequency and coverage of UAV surveys may be limited by financial and other constraints, leading to errors in estimating species occurrence or density. We use simulation modelling to investigate how movement ecology should influence fine-scale decisions regarding ecological surveillance using UAVs. Movement and dispersal parameter choices allow contrasts between locally mobile but slow-dispersing populations, and species that are locally more static but invasive at the landscape scale. We find that low and slow UAV flights may offer the best monitoring strategy to predict local population densities in transects, but that the consequent reduction in overall area sampled may sacrifice the ability to reliably predict regional population density. Alternative flight plans may perform better, but this is also dependent on movement ecology and the magnitude of relative detection errors for different flight choices. Simulated investigations such as this will become increasingly useful to reveal how spatio-temporal extent and resolution of UAV monitoring should be adjusted to reduce observation errors and thus provide better population estimates, maximising the efficacy and efficiency of unmanned aerial surveys.
Resumo:
The electronic structures of a series of 4-substituted pyridine N-oxides and 4-nitroquinoline N-oxide are investigated using the simple Pariser-Parr-Pople (PPP), a modified PPP, IEH and MINDO/2 methods. The electronic absorption band maxima and dipole moments are calculated and compared with experimental values. The photoelectron spectra of these compounds are assigned. The nature of the N-oxide group is characterized using the orbital population distributions. The antifungal activity exhibited by some of these compounds is discussed in terms of the nucleophilic frontier electron densities, superdelocalizabilities and electron acceptor properties. The effect of the electron releasing as well as the electron withdrawing substituents on the physico-chemical properties is explained.