992 resultados para Fluorescence quantum yield
Resumo:
During fluorescence cystoscopy, it is observed that the acquired images are sometimes blurred by a greenish background originating from the bladder washout fluid. Several fluorophores are involved in this overall liquid fluorescence, and their exact origin and relative contributions remain unknown. In this study, the bladder washout fluid is sampled at different times during fluorescence cystoscopy examinations. In total, 32 samples from 12 patients are analyzed with a spectrofluorimeter (excitation range: 350-445 nm, emission range 380-700 nm). This study shows clearly that the position of the fluorescence peaks (excitation/emission wavelengths: 450/525 nm, 405/625 nm) and shoulder (440/525 nm) is reproducible between different patients. It also suggests that an excitation at wavelengths higher than 400 nm helps to suppress this solution background fluorescence. Additionally, the pH of the solution seems to influence the position of the fluorescence peaks, and this suggests that changing the pH of the examination liquid could help in avoiding the greenish background.
Resumo:
The species x location interaction was of great importance in explaining the behaviour of genetic material. The study presented here shows, for the first time, the performance, under field conditions of the new tritordeum species, compared to wheat and triticale in a wide range of Mediterranean countries (Spain, Lebanon and Tunisia). The results obtained revealed that despite the diversity of environmental conditions, the main differences in yield were due to genotypes, especially to differences between species. The multi-local study with different growth conditions revealed important information about the water availability effect on yield. In the lowest yielding environments (Tunisia rainfed), Tritordeum and triticale yields were equivalent. However under better growth conditions (Spain), tritordeum yield was shown to be lower than wheat and triticale. Interestingly, when water limitation was extended during the pre-anthesis period, differences in tritordeum versus wheat-triticale yield rate were larger than when water stress occurred during anthesis. These variations were explained by the fact that kernel weight has been found as the limiting factor for yield determination in tritordeum, and a delay in the anthesis date may have been the cause for the low kernel weight and low yield under Mediterranean drought conditions. Such differences in yield between tritordeum and wheat or triticale could be explained by the fact that tritordeum is a relatively new species and far fewer resources have been devoted to its improvement when compared to wheat and triticale. Our results suggest that breeding efforts should be directed to an earlier anthesis date and a longer grain filling period. tritordeum proved to have possibilities to be grown under drought environments as a new crop, since its performance was quite close to wheat and triticale. Besides, it has qualitative added values that may improve farmers' income per unit land.
Resumo:
Objectives: To determine characteristics of older patients referred to a geriatric outpatient clinic; 2) to determine the prevalence of geriatric syndromes in this population; 3) to identify main recommendations made to referring primary care physicians. Design: Cross-sectional analysis Setting: Outpatient clinic of the service of geriatric medicine at the University of Lausanne Medical Center, Lausanne, Switzerland. Participants: Community-dwelling patients aged 65 and over referred to the clinic. Measurements: Demographics, social, functional and health status data, main diagnoses identified and recommendations made for primary care physicians were collected prospectively. Results: Subjects (N=206, mean age 79.7±7.6 years, 57.3% women, 48.5% living alone, 36.9% receiving formal home care) were referred by primary care physicians (76%), hospitalists (18%), or family members (7%). Main reasons for referral were request for comprehensive assessment, cognitive evaluation, and mobility assessment (45.2%, 26.2%, and 15.5%, respectively). 21.4% of patients are independent in Lawton's Instrumental ADL and 47.1% are independent in Katz's Basic ADL, and 57.3% of patients reported having fallen once or more over the last year. Overall, 76.2% of patients had gait and balance impairment, 72.8% cognitive impairment, 57.3% polypharmacy (≥6 drugs; median 6.5±3.9, IQR 4-8), 54.4% affective disorder, 48.3% osteoporosis, 45.1% urinary incontinence and 33.8% orthostatic hypotension. Polymorbidity (≥6 geriatric syndromes) was present in 58.3% of referred patients. On average, patients received 10.6±4.0 recommendations, including fall prevention interventions (85.2 % of patients: walking aid adaptation in 48.1%, vitamin D prescription in 59.7%, home hazards assessment in 59.2%, and exercise prescription in 53.4%), referral to a memory clinic (45.6%), and treatment modifications (69.9 % of all patients and 81.6% of patients with polypharmacy, mostly psychotropic drugs discontinuation). Conclusions: Polymorbidity was frequent in these older outpatients, with polypharmacy, mobility and cognitive impairments being most prevalent. Outpatient geriatric consultation is a good opportunity to identify geriatric syndromes and propose interventions to prevent or delay functional decline.
Resumo:
The dissertation investigates some relevant metaphysical issues arising in the context of spacetime theories. In particular, the inquiry focuses on general relativity and canonical quantum gravity. A formal definition of spacetime theory is proposed and, against this framework, an analysis of the notions of general covariance, symmetry and background independence is performed. It is argued that many conceptual issues in general relativity and canonical quantum gravity derive from putting excessive emphasis on general covariance as an ontological prin-ciple. An original metaphysical position grounded in scientific essential- ism and causal realism (weak essentialism) is developed and defended. It is argued that, in the context of general relativity, weak essentialism supports spacetime substantivalism. It is also shown that weak essentialism escapes arguments from metaphysical underdetermination by positing a particular kind of causation, dubbed geometric. The proposed interpretive framework is then applied to Bohmian mechanics, pointing out that weak essentialism nicely fits into this theory. In the end, a possible Bohmian implementation of loop quantum gravity is considered, and such a Bohmian approach is interpreted in a geometric causal fashion. Under this interpretation, Bohmian loop quantum gravity straightforwardly commits us to an ontology of elementary extensions of space whose evolution is described by a non-local law. The causal mechanism underlying this evolution clarifies many conceptual issues related to the emergence of classical spacetime from the quantum regime. Although there is as yet no fully worked out physical theory of quantum gravity, it is argued that the proposed approach sets up a standard that proposals for a serious ontology in this field should meet.
Resumo:
Immunotherapy with monoclonal and polyclonal immunoglobulin is successfully applied to improve many clinical conditions, including infection, autoimmune diseases, or immunodeficiency. Most immunoglobulin products, recombinant or plasma-derived, are based on IgG antibodies, whereas to date, the use of IgA for therapeutic application has remained anecdotal. In particular, purification or production of large quantities of secretory IgA (SIgA) for potential mucosal application has not been achieved. In this work, we sought to investigate whether polymeric IgA (pIgA) recovered from human plasma is able to associate with secretory component (SC) to generate SIgA-like molecules. We found that ∼15% of plasma pIgA carried J chain and displayed selective SC binding capacity either in a mixture with monomeric IgA (mIgA) or after purification. The recombinant SC associated covalently in a 1:1 stoichiometry with pIgA and with similar efficacy as colostrum-derived SC. In comparison with pIgA, the association with SC delayed degradation of SIgA by intestinal proteases. Similar results were obtained with plasma-derived IgM. In vitro, plasma-derived IgA and SIgA neutralized Shigella flexneri used as a model pathogen, resulting in a delay of bacteria-induced damage targeted to polarized Caco-2 cell monolayers. The sum of these novel data demonstrates that association of plasma-derived IgA or IgM with recombinant/colostrum-derived SC is feasible and yields SIgA- and SIgM-like molecules with similar biochemical and functional characteristics as mucosa-derived immunoglobulins.
Resumo:
This paper is concerned with the modeling and analysis of quantum dissipation phenomena in the Schrödinger picture. More precisely, we do investigate in detail a dissipative, nonlinear Schrödinger equation somehow accounting for quantum Fokker–Planck effects, and how it is drastically reduced to a simpler logarithmic equation via a nonlinear gauge transformation in such a way that the physics underlying both problems keeps unaltered. From a mathematical viewpoint, this allows for a more achievable analysis regarding the local wellposedness of the initial–boundary value problem. This simplification requires the performance of the polar (modulus–argument) decomposition of the wavefunction, which is rigorously attained (for the first time to the best of our knowledge) under quite reasonable assumptions.
Resumo:
A new and original reagent based on the use of highly fluorescent cadmium telluride (CdTe) quantum dots (QDs) in aqueous solution is proposed to detect weak fingermarks in blood on non-porous surfaces. To assess the efficiency of this approach, comparisons were performed with one of the most efficient blood reagents on non-porous surfaces, Acid Yellow 7 (AY7). To this end, four non-porous surfaces were studied, i.e. glass, transparent polypropylene, black polyethylene, and aluminium foil. To evaluate the sensitivity of both reagents, sets of depleted fingermarks were prepared, using the same finger, initially soaked with blood, which was then successively applied on the same surface without recharging it with blood or latent secretions. The successive marks were then cut in halves and the halves treated separately with each reagent. The results showed that QDs were equally efficient to AY7 on glass, polyethylene and polypropylene surfaces, and were superior to AY7 on aluminium. The use of QDs in new, sensitive and highly efficient latent and blood mark detection techniques appears highly promising. Health and safety issues related to the use of cadmium are also discussed. It is suggested that applying QDs in aqueous solution (and not as a dry dusting powder) considerably lowers the toxicity risks.
Resumo:
In a global approach combining fluorescence recovery after photobleaching (FRAP), fluorescence correlation spectroscopy (FCS), and fluorescence resonance energy transfer (FRET), we address the behavior in living cells of the peroxisome proliferator-activated receptors (PPARs), a family of nuclear receptors involved in lipid and glucose metabolism, inflammation control, and wound healing. We first demonstrate that unlike several other nuclear receptors, PPARs do not form speckles upon ligand activation. The subnuclear structures that may be observed under some experimental conditions result from overexpression of the protein and our immunolabeling experiments suggest that these structures are subjected to degradation by the proteasome. Interestingly and in contrast to a general assumption, PPARs readily heterodimerize with retinoid X receptor (RXR) in the absence of ligand in living cells. PPAR diffusion coefficients indicate that all the receptors are engaged in complexes of very high molecular masses and/or interact with relatively immobile nuclear components. PPARs are not immobilized by ligand binding. However, they exhibit a ligand-induced reduction of mobility, probably due to enhanced interactions with cofactors and/or chromatin. Our study draws attention to the limitations and pitfalls of fluorescent chimera imaging and demonstrates the usefulness of the combination of FCS, FRAP, and FRET to assess the behavior of nuclear receptors and their mode of action in living cells.
Resumo:
Injection drug use before and after liver transplantation: a retrospective multicenter analysis on incidence and outcome. Clin Transplant 2009 DOI: 10.1111/j.1399-0012.2009.01121.x. Background and aims: Injecting drug use (IDU) before and after liver transplantation (LT) is poorly described. The aim of this study was to quantify relapse and survival in this population and to describe the causes of mortality after LT. Methods: Past injection drug users were identified from the LT listing protocols from four centers in Switzerland and France. Data on survival and relapse were collected and used for uni- and multivariate analysis. Results: Between 1988 and 2006, we identified 59 patients with a past history of IDU. The mean age at transplantation was 42.4 yr and the majority of patients were men (84.7%). The indication for LT was for the vast majority viral cirrhosis accounting for 91.5% of cases, while alcoholic cirrhosis was 5.1%. There were 16.9% of patients who had a substitution therapy before and 6.8% who continued after LT. Two patients (3.4%) relapsed into IDU after LT and died at 18 and 41 months. The mean follow-up was 51 months. Overall survival was 84%, 66%, and 61% at 1, 5, and 10 yr after transplantation. Conclusions: Documented IDU was rare in liver transplanted patients. Past IDU was not associated with poorer survival after LT, and relapse after LT occurred in 3.4%.
Resumo:
Distinguishing subpopulations in group behavioral experiments can reveal the impact of differences in genetic, pharmacological and life-histories on social interactions and decision-making. Here we describe Fluorescence Behavioral Imaging (FBI), a toolkit that uses transgenic fluorescence to discriminate subpopulations, imaging hardware that simultaneously records behavior and fluorescence expression, and open-source software for automated, high-accuracy determination of genetic identity. Using FBI, we measure courtship partner choice in genetically mixed groups of Drosophila.
Resumo:
Genetically engineered bioreporters are an excellent complement to traditional methods of chemical analysis. The application of fluorescence flow cytometry to detection of bioreporter response enables rapid and efficient characterization of bacterial bioreporter population response on a single-cell basis. In the present study, intrapopulation response variability was used to obtain higher analytical sensitivity and precision. We have analyzed flow cytometric data for an arsenic-sensitive bacterial bioreporter using an artificial neural network-based adaptive clustering approach (a single-layer perceptron model). Results for this approach are far superior to other methods that we have applied to this fluorescent bioreporter (e.g., the arsenic detection limit is 0.01 microM, substantially lower than for other detection methods/algorithms). The approach is highly efficient computationally and can be implemented on a real-time basis, thus having potential for future development of high-throughput screening applications.