997 resultados para Flight engineering
Resumo:
"Historically, science had a place in education before the time of Plato and Aristotle (e.g., Stonehenge). Technology gradually increased since early human inventions (e.g., indigenous tools and weapons), rose up dramatically through the industrial revolution and escalated exponentially during the twentieth and twenty-first centuries, particularly with the advent of the Internet. Engineering accomplishments were evident in the constructs of early civil works, including roads and structural feats such as the Egyptian pyramids. Mathematics was not as clearly defined BC (Seeds 2010), but was utilized for more than two millennia (e.g., Archimedes, Kepler, and Newton) and paved its way into education as an essential scientific tool and a way of discovering new possibilities. Hence, combining science, technology, engineering, and mathematics (STEM) areas should not come as a surprise but rather as a unique way of packaging what has been ..."--Publisher Website
Resumo:
This paper presents an approach to mobile robot localization, place recognition and loop closure using a monostatic ultra-wide band (UWB) radar system. The UWB radar is a time-of-flight based range measurement sensor that transmits short pulses and receives reflected waves from objects in the environment. The main idea of the poposed localization method is to treat the received waveform as a signature of place. The resulting echo waveform is very complex and highly depends on the position of the sensor with respect to surrounding objects. On the other hand, the sensor receives similar waveforms from the same positions.Moreover, the directional characteristics of dipole antenna is almost omnidirectional. Therefore, we can localize the sensor position to find similar waveform from waveform database. This paper proposes a place recognitionmethod based on waveform matching, presents a number of experiments that illustrate the high positon estimation accuracy of our UWB radar-based localization system, and shows the resulting loop detection performance in a typical indoor office environment and a forest.
Resumo:
The commercialization of aerial image processing is highly dependent on the platforms such as UAVs (Unmanned Aerial Vehicles). However, the lack of an automated UAV forced landing site detection system has been identified as one of the main impediments to allow UAV flight over populated areas in civilian airspace. This article proposes a UAV forced landing site detection system that is based on machine learning approaches including the Gaussian Mixture Model and the Support Vector Machine. A range of learning parameters are analysed including the number of Guassian mixtures, support vector kernels including linear, radial basis function Kernel (RBF) and polynormial kernel (poly), and the order of RBF kernel and polynormial kernel. Moreover, a modified footprint operator is employed during feature extraction to better describe the geometric characteristics of the local area surrounding a pixel. The performance of the presented system is compared to a baseline UAV forced landing site detection system which uses edge features and an Artificial Neural Network (ANN) region type classifier. Experiments conducted on aerial image datasets captured over typical urban environments reveal improved landing site detection can be achieved with an SVM classifier with an RBF kernel using a combination of colour and texture features. Compared to the baseline system, the proposed system provides significant improvement in term of the chance to detect a safe landing area, and the performance is more stable than the baseline in the presence of changes to the UAV altitude.
Resumo:
The role of different chemical compounds, particularly organics, involved in the new particle formation (NPF) and its consequent growth are not fully understood. Therefore, this study was conducted to investigate the chemistry of aerosol particles during NPF events in an urban subtropical environment. Aerosol chemical composition was measured along with particle number size distribution (PNSD) and several other air quality parameters at five sites across an urban subtropical environment. An Aerodyne compact Time-of-Flight Aerosol Mass Spectrometer (c-TOF-AMS) and a TSI Scanning Mobility Particle Sizer (SMPS) measured aerosol chemical composition and PNSD, respectively. Five NPF events, with growth rates in the range 3.3-4.6 nm, were detected at two sites. The NPF events happened on relatively warmer days with lower humidity and higher solar radiation. Temporal percent fractions of nitrate, sulphate, ammonium and organics were modelled using the Generalised Additive Model (GAM), with a basis of penalised spline. Percent fractions of organics increased after the NPF events, while the mass fraction of ammonium and sulphate decreased. This uncovered the important role of organics in the growth of newly formed particles. Three organic markers, factors f43, f44 and f57, were calculated and the f44 vs f43 trends were compared between nucleation and non-nucleation days. f44 vs f43 followed a different pattern on nucleation days compared to non-nucleation days, whereby f43 decreased for vehicle emission generated particles, while both f44 and f43 decreased for NPF generated particles. It was found for the first time that vehicle generated and newly formed particles cluster in different locations on f44 vs f43 plot and this finding can be used as a tool for source apportionment of measured particles.
Resumo:
Tertiary institutions now face serious challenges. Modern industry requires engineering graduates with strong knowledge of modern technologies, highly practical focus, management skills, ability to work individually and in a team, understanding of environmental issues and many other skills and graduate attributes. Institutions in the tertiary sector change courses and modify curriculum to reflect challenges of the modern industry and make engineering graduates better prepared for the “real world”. Queensland University of Technology in the recent years introduced an innovative structure of engineering courses with a common core for Bachelor of Engineering Mechanical, Infomechatronics and Medical, where manufacturing is taught in conjunction with engineering design and engineering materials. In this paper we discuss the innovative curriculum structure, teaching and learning approaches of coherent delivery of manufacturing in conjunction with engineering design and
Resumo:
In an industry worth more than €500 billion annually, producing more than 80 million vehicles worldwide each year and consisting of over 50 major manufacturers worldwide, the automotive industry represents a lucrative but highly competitive manufacturing industry (Deloitte, 2009a; European Automobile Manufacturers Association, 2012). With sales falling in Europe in 2013 for the sixth consecutive year (Boston and Curtin, 2014), automotive manufacturers are increasingly turning to new strategies to retain their share of sales in a contracting market. Some strategies have focused on the industry approach to manufacturing, namely, a technically focused push for a build-toorder process rather than the current build-to-stock approach in order to reduce overall value-chain costs and to increase efficiency (Parry and Roehrich, 2013, p. 13). However, others stress a more customer-orientated approach, striving to develop products that meet customer requirements (Oliver Wyman Group, 2007).
Resumo:
Nanotubes and nanosheets are low-dimensional nanomaterials with unique properties that can be exploited for numerous applications. This book offers a complete overview of their structure, properties, development, modeling approaches, and practical use. It focuses attention on boron nitride (BN) nanotubes, which have had major interest given their special high-temperature properties, as well as graphene nanosheets, BN nanosheets, and metal oxide nanosheets. Key topics include surface functionalization of nanotubes for composite applications, wetting property changes for biocompatible environments, and graphene for energy storage applications
Resumo:
Details the developments to date of an unmanned air vehicle (UAV) based on a standard size 60 model helicopter. The design goal is to have the helicopter achieve stable hover with the aid of an INS and stereo vision. The focus of the paper is on the development of an artificial neural network (ANN) that makes use of only the INS data to generate hover commands, which are used to directly manipulate the flight servos. Current results show that networks incorporating some form of recurrency (state history) offer little advantage over those without. At this stage, the ANN has partially maintained periods of hover even with misaligned sensors.
Resumo:
The detailed system design of a small experimental autonomous helicopter is described. The system requires no ground-to-helicopter communications and hence all automation hardware is on-board the helicopter. All elements of the system are described including the control computer, the flight computer (the helicopter-to-control-computer interface), the sensors and the software. A number of critical implementation issues are also discussed.
Resumo:
The mining industry is highly suitable for the application of robotics and automation technology since the work is arduous, dangerous and often repetitive. This paper discusses a robust sensing system developed to find and trade the position of the hoist ropes of a dragline. Draglines are large `walking cranes' used in open-pit coal mining to remove the material covering the coal seam. The rope sensing system developed uses two time-of-flight laser scanners. The finding algorithm uses a novel data association and tracking strategy based on pairing rope data.
Resumo:
External stimulus/loading initiates adaptations within skeletal muscle. It has been previously found that the cervical area has the highest loading while performing flying maneuvers under +Gz. The first purpose of this study was to examine the neck muscle response to the physical environment associated with flight training, incorporating limited exposure to +Gz force, in a Pilatus PC-9 aircraft. The second purpose was to examine the short-term range of movement (ROM) response to flight training. Isometric cervical muscle strength and ROM was monitored in 9 RAAF pilots completing an 8-mo flight-training course at Pearce Airbase in Western Australia, and in 10 controls matched for gender, age, height, and weight. Isometric cervical muscle strength and ROM were measured at baseline and at 8 mo using the multi-cervical rehabilitation unit (Hanoun Medical, Downsview, Ontario, Canada). Results indicated that an increase in pilot neck strength was limited to flexion while in a neutral position. No strength changes were recorded in any other site in the pilots or for the controls. These findings suggest that short-term exposure to the physical environment associated with flight training had a limited significant effect on increasing isometric cervical muscle strength. No significant changes were observed in pilot ROM, indicating that short-term exposure to flight does not effect ROM.
Resumo:
BACKGROUND High magnitude loads and unusual loading regimes are two important determinants for increasing bone mass. Past research demonstrated that positive Gz-induced loading, providing high loads in an unaccustomed manner, had an osteogenic effect on bone. Another determinant of bone mass is that the bone response to loading is site specific. This study sought to further investigate the site specific bone response to loading, examining the cervical spine response, the site suspected of experiencing the greatest loading, to high performance flight. METHODS Bone mineral density (BMD) and bone mineral content (BMC) was monitored in 9 RAAF trainee fighter pilots completing an 8-mo flight training course on a PC-9 and 10 age-height-weight-matched controls. RESULTS At completion of the course, the pilots had a significant increase in cervical spine BMD and total body BMC. No significant changes were found for the control group. CONCLUSIONS This study demonstrated that the physical environment associated with flight training may have contributed to a significant increase in cervical spine bone mass in the trainee PC-9 pilots. The increase in bone mass was possibly a response to the strain generated by the daily wearing of helmet and mask assembly under the influence of positive sustained accelerative forces.
Resumo:
Contemporary higher education institutions are making significant efforts to develop cohesive, meaningful and effective learning experiences for Science, Technology, Engineering and Mathematics (STEM) curricula to prepare graduates for challenges in the modern knowledge economy, thus enhancing their employability (Carnevale et al, 2011). This can inspire innovative redesign of learning experiences embedded in technology-enhanced educational environments and the development of research-informed, pedagogically reliable strategies fostering interactions between various agents of the learning-teaching process. This paper reports on the results of a project aimed at enhancing students’ learning experiences by redesigning a large, first year mathematics unit for Engineering students at a large metropolitan public university. Within the project, the current study investigates the effectiveness of selected, technology-mediated pedagogical approaches used over three semesters. Grounded in user-centred instructional design, the pedagogical approaches explored the opportunities for learning created by designing an environment containing technological, social and educational affordances. A qualitative analysis of mixed-type questionnaires distributed to students indicated important inter-relations between participants’ frames of references of the learning-teaching process and stressed the importance (and difficulty) of creating appropriate functional context. Conclusions drawn from this study may inform instructional design for blended delivery of STEM-focused programs that endeavor to enhance students’ employability by educating work-ready graduates.
Resumo:
The primary aim of this multidisciplinary project was to develop a new generation of breast implants. Disrupting the currently prevailing paradigm of silicone implants which permanently introduce a foreign body into mastectomy patients, highly porous implants developed as part of this PhD project are biodegradable by the body and augment the growth of natural tissue. Our technology platform leverages computer-assisted-design which allows us to manufacture fully patient-specific implants based on a personalised medicine approach. Multiple animal studies conducted in this project have shown that the polymeric implant slowly degrades within the body harmlessly while the body's own tissue forms concurrently.