998 resultados para Finite Chian Rings
Resumo:
The basic idea of the finite element beam propagation method (FE-BPM) is described. It is applied to calculate the fundamental mode of a channel plasmonic polariton (CPP) waveguide to confirm its validity. Both the field distribution and the effective index of the, fundamental mode are given by the method. The convergence speed shows the advantage and stability of this method. Then a plasmonic waveguide with a dielectric strip deposited on a metal substrate is investigated, and the group velocity is negative for the fundamental mode of this kind of waveguide. The numerical result shows that the power flow direction is reverse to that of phase velocity.
Resumo:
We investigated the transmission probability of a single electron transmission through a quantum ring device based on the single-band effective mass approximation method and transfer matrix theory. The time-dependent Schrodinger equation is applied on a Gaussian wave packet passing through the quantum ring system. The electron tunneling resonance peaks split when the electron transmits through a double quantum ring. The splitting energy increases as the distance between the two quantum rings decreases. We studied the tunneling time through the single electron transmission quantum ring from the temporal evolution of the Gaussian wave packet. The electron probability density is sensitive to the thickness of the barrier between the two quantum rings. (C) 2008 American Institute of Physics.
Resumo:
We theoretically investigate the spin transport in two-terminal mesoscopic rings in the presence of both the Rashba spin-orbit interaction (RSOI) and the Dresselhaus spin-orbit interaction (DSOI). We find that the interplay between the RSOI and DSOI breaks the original cylindric symmetry of the mesoscopic rings and consequently leads to the anisotropic spin transport, i.e., the conductance is sensitive to the positions of the incoming and outgoing leads. The anisotropic spin transport can survive even in the presence of disorder caused by impurity elastic scattering in a realistic system.
Resumo:
Modes in a microsquare resonator slab with strong vertical waveguide consisting of air/semiconductor/air are analyzed by three-dimensional (3-D) finite-difference time-domain simulation, and compared with that of two-dimensional (2-D) simulation under effective index approximation. Mode frequencies and field distributions inside the resonator obtained by the 3-D simulation are in good agreement with those of the 2-D approximation. However, field distributions at the boundary of the resonator obtained by 3-D simulation are different from that of the 2-D simulation, especially the vertical field distribution near the boundary is great different from that of the slab waveguide, which is used in the effective index approximation. Furthermore the quality factors obtained by 3-D simulation are much larger. than that by 2-D simulation for the square resonator slab with the strong vertical waveguide.
Resumo:
Two-dimensionally arranged gold rings were prepared by depositing a polymeric membrane bearing a dense array of uniform pores onto a mica substrate, filling the pores with a solution of a gold precursor, evaporation of the solvent and calcinations. The epitaxy of gold rings is confirmed by x-ray diffraction measurements, and the epitaxial relationship between gold rings and the mica was found to be Au(111)[1-10]parallel to mica(001)[010]. The polar and azimuthal angular spreads are 0.3 degrees and 1 degrees, respectively, which is at least equal to or better than the quality of the corresponding epitaxial gold-film on mica. (c) 2005 American Institute of Physics.
Resumo:
The authors calculate the lifetime distribution functions of spontaneous emission from infinite line antennas embedded in two-dimensional disordered photonic crystals with finite size. The calculations indicate the coexistence of both accelerated and inhibited decay processes in disordered photonic crystals with finite size. The decay behavior of the spontaneous emission from infinite line antennas changes significantly by varying factors such as the line antennas' positions in the disordered photonic crystal, the shape of the crystal, the filling fraction, and the dielectric constant. Moreover, the authors analyze the effect of the degree of disorder on spontaneous emission. (c) 2007 American Institute of Physics.
Resumo:
The effects of electron-phonon interaction oil energy levels of a. polaron in a wurtzite nitride finite parabolic quantum well (PQW) are studied by using a modified Lee-Low-Pines variational method. The ground state, first excited state, and transition energy of the polaron in the GaN/Al0.3Ga0.7N wurtzite PQW are calculated by taking account of the influence of confined LO(TO)-like phonon modes and the half-space LO(TO)-like phonon modes and considering the anisotropy of all kinds of phonon modes. The numerical results are given and discussed. The results show that the electron phonon interaction strongly affects the energy levels of the polaron, and the contributions from phonons to the energy of a polaron hi a wurtzite nitride PQW are greater than that in all AlGaAs PQW. This indicates that the electron-phonon interaction in a wurtzite nitride PQW is not negligible.
Resumo:
The three-dimensional morphology of In(Ga)As nanostructures embedded in a GaAs matrix is investigated by combining atomic force microscopy and removal of the GaAs cap layer by selective wet etching. This method is used to investigate how the morphology of In(Ga)As quantum dots changes upon GaAs capping and subsequent in situ etching with AsBr3. A wave function calculation based on the experimentally determined morphologies suggests that quantum dots transform into quantum rings during in situ etching. (c) 2007 American Institute of Physics.
Resumo:
An add-drop filter based on a perfect square resonator can realize a maximum of only 25% power dropping because the confined modes are standing-wave modes. By means of mode coupling between two modes with inverse symmetry properties, a traveling-wave-like filtering response is obtained in a two-dimensional single square cavity filter with cut or circular corners by finite-difference time-domain simulation. The optimized deformation parameters for an add-drop filter can be accurately predicted as the overlapping point of the two coupling modes in an isolated deformed square cavity. More than 80% power dropping can be obtained in a deformed square cavity filter with a side length of 3.01 mu m. The free spectral region is decided by the mode spacing between modes, with the sum of the mode indices differing by 1. (c) 2007 Optical Society of America.
Resumo:
Mode characteristics of a strongly confined square cavity suspended in air via a pedestal on the substrate are investigated by a three-dimensional finite-difference time-domain technique. The mode wavelengths and mode quality factors (Q factors) are calculated as the functions of the size of the pedestal and the slope angle 0 of the sidewalls of the square slab, respectively For the square slab with side length of 2 mu m, thickness of 0.2 mu m, and refractive index of 3.4, on a square pedestal with refractive index of 3.17, the Q factor of the whispering-gallery (WG)-like mode transverse-electric TE(3.5)o first increases with the side length b of the square pedestal and then quickly decreases as b > 0.4 mu m, but the Q factor of the WG-like mode TE(4.6)o drops down quickly as b > 0.2 mu m, owing to their different symmetries. The results indicate that the pedestal can also result in mode selection in the WG-like modes. In addition, the numerical results show that the Q factors decrease 50% as the slope angle of the sidewalls varies from 90 degrees to 80 degrees. The mode characteristics of WG-like modes in the square cavity with a rectangular pedestal are also discussed. The results show that the nonsquare pedestal largely degrades the WG-like modes. (c) 2006 Optical Society of America
Resumo:
Single-walled carbon nanotube (SWNT) rings with a diameter of about 100 nm have been prepared by thermally decomposing hydrocarbon in a floating catalyst system. These rings appeared to consist mostly of SWNT toroids. High resolution transmission electron microscopy showed that these rings were composed of tens of SWNTs with a tightly packed arrangement. The production of SWNT rings was improved through optimizing various growth parameters, such as growth temperature, sublimation temperature of the catalyst, different gas flows and different catalyst components. The growth mechanism of the SWNT rings is discussed. In the field emission measurements we found that field emission from a halved ring is better than that from a whole SWNT ring, which contributed to the better emission from two opened ends of the nanotubes of the halved SWNT ring.
Resumo:
The mode characteristics of a three-dimensional (3D) microdisk with a vertical refractive index distribution of n(2)/3.4/n(2) are investigated by the S-matrix method and 3D finite-difference time-domain (FDTD) technique. For the microdisk with a thickness of 0.2 mu m. and a radius of 1 mu m, the mode wavelengths and quality factors for the HE7,1 mode obtained by 3D FDTD simulation and the S-matrix method are in good agreement as n(2) increases from 1.0 to 2.6. But the Q factor obtained by the 3D FDTD rapidly decreases from 1.12 X 10(4) to 379 as n2 increases from 2.65 to 2.8 owing to the vertical radiation losses, which cannot be predicted by the proposed S-matrix method. The comparisons also show that quality factors obtained from the analytical solution of two-dimensional microdisks under the effective index approximation are five to seven times smaller than those of the 3D FDTD as n(2) = 1 and R = 1 mu m. (c) 2006 Optical Society of America.
Resumo:
In this paper, we perform systematic calculations of the stress and strain distributions in InAs/GaAs truncated pyramidal quantum dots (QDs) with different wetting layer (WL) thickness, using the finite element method (FEM). The stresses and strains are concentrated at the boundaries of the WL and QDs, are reduced gradually from the boundaries to the interior, and tend to a uniform state for the positions away from the boundaries. The maximal strain energy density occurs at the vicinity of the interface between the WL and the substrate. The stresses, strains and released strain energy are reduced gradually with increasing WL thickness. The above results show that a critical WL thickness may exist, and the stress and strain distributions can make the growth of QDs a growth of strained three-dimensional island when the WL thickness is above the critical value, and FEM can be applied to investigate such nanosystems, QDs, and the relevant results are supported by the experiments.
Resumo:
Quality factor enhancement due to mode coupling is observed in a three-dimensional microdisk resonator. The microdisk, which is vertically sandwiched between air and a substrate, with a radius of 1 mu m, a thickness of 0.2 mu m, and a refractive index of 3.4, is considered in a finite-difference time-domain (FDTD) numerical simulation. The mode quality factor of the fundamental mode HE71 decreases with an increase of the refractive index of the substrate, n(sub), from 2.0 to 3.17. However, the mode quality factor of the first-order mode HE72 reaches a peak value at n(sub) = 2.7 because of the mode coupling between the fundamental and the first-order modes. The variation of mode field distributions due to the mode coupling is also observed. This mechanism may be used to realize high-quality-factor modes in microdisks with high-refractive-index substrates. (c) 2006 Optical Society of America.
Resumo:
A model for scattering due to interface roughness in finite quantum wells (QWs) is developed within the framework of the Boltzmann transport equation and a simple and explicit expression between mobility limited by interface roughness scattering and barrier height is obtained. The main advantage of our model is that it does not involve complicated wavefunction calculations, and thus it is convenient for predicting the mobility in thin finite QWs. It is found that the mobility limited by interface roughness is one order of amplitude higher than the results derived by assuming an infinite barrier, for finite barrier height QWs where x = 0.3. The mobility first decreases and then flattens out as the barrier confinement increases. The experimental results may be explained with monolayers of asperity height 1-2, and a correlation length of about 33 angstrom. The calculation results are in excellent agreement with the experimental data from AlxGa1-xAs/GaAs QWs.