973 resultados para Ethanol fumigation


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of evaporation and the presence of agglomerating nanoparticles on the oscillation characteristics of pendant droplets are studied experimentally using ethanol and aqueous nanoalumina suspension, respectively. Axisymmetric oscillations induced by a round air jet are considered. Wavelet transform of the time evolution of the 2nd modal coefficient revealed that while a continuous increase in the natural frequency of the droplet occurs with time due to the diameter regression induced by vaporization in the case of ethanol droplet, no such change in resonant frequency occurs in the case of the agglomerating droplet. However, a gradual reduction in the oscillation amplitude ensues as the agglomeration becomes dominant. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nitrate contamination of groundwater arises from anthropogenic activities, such as, fertilizer and animal manure applications and infiltration of wastewater/leachates. During migration of wastewater and leachates, the vadose zone (zone residing above the groundwater table), is considered to facilitate microbial denitrification. Particle voids in vadose zone are deficient in dissolved oxygen as the voids are partially filled by water and the remainder by air. Discontinuities in liquid phase would also restrict oxygen diffusion and therefore facilitate denitrification in the vadose/unsaturated soil zone. The degree of saturation of soil specimen (S (r)) quantifies the relative volume of voids filled with air and water. Unsaturated specimens have S (r) values ranging between 0 and 100 %. Earlier studies from naturally occurring nitrate losses in groundwater aquifers in Mulbagal town, Kolar District, Karnataka, showed that the sub-surface soils composed of residually derived sandy soil; hence, natural sand was chosen in the laboratory denitrification experiments. With a view to understand the role of vadose zone in denitrification process, experiments are performed with unsaturated sand specimens (S (r) = 73-90 %) whose pore water was spiked with nitrate and ethanol solutions. Experimental results revealed 73 % S (r) specimen facilitates nitrate reduction to 45 mg/L in relatively short durations of 5.5-7.5 h using the available natural organic matter (0.41 % on mass basis of sand); consequently, ethanol addition did not impact rate of denitrification. However, at higher S (r) values of 81 and 90 %, extraneous ethanol addition (C/N = 0.5-3) was needed to accelerate the denitrification rates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The solvothermal reaction of CoCl(2)4H(2)O and 4,4-sulfonyldibenzoic acid (H(2)SDBA) resulted in the formation of a three-dimensional coordination polymer Co-3(C14H8O6S)(3)(DMA)(2)(MeOH)].DMA (Ia) consisting of trinuclear Co-3 oxo-cluster units. The Co-3 trimeric units are connected by SDBA(2-) anions leading to a three dimensional structure with a pcu topology. The terminal methanol molecules could be exchanged in a single crystal to single crystal (SCSC) fashion by other similar solvent molecules (ethanol, acetonitrile, water, ethyleneglycol). Magnetic studies on the parent compound, Ia, indicate antiferromagnetic interactions between the central metal atoms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, we report the gas sensing behavior of BiNbO4 nanopowder prepared by a low temperature simple solution-based method. Before the sensing behaviour study, the as-synthesized nanopowder was characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, UV-diffuse reflectance spectroscopy, impedance analysis, and surface area measurement. The NH3 sensing behavior of BiNbO4 was then studied by temperature modulation (50-350 degrees C) as well as concentration modulation (20-140 ppm). At the optimum operating temperature of 325 degrees C, the sensitivity was measured to be 90%. The cross-sensitivity of as-synthesized BiNbO4 sensor was also investigated by assessing the sensing behavior toward other gases such as hydrogen sulphide (H2S), ethanol (C2H5OH), and liquid petroleum gas (LPG). Finally, selectivity of the sensing material toward NH3 was characterized by observing the sensor response with gas concentrations in the range 20-140 ppm. The response and recovery time for NH3 sensing at 120 ppm were about 16 s and about 17 s, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present study, we have synthesised carbon nanoparticles (CNPs) through a relatively simple process using a hydrocarbon precursor. These synthesised CNPs in the form of elongated spherules and/or agglomerates of 30-55 nm were further used as a support to anchor platinum nanoparticles. The broad light absorption (300-700 nm) and a facile charge transfer property of CNPs in addition to the plasmonic property of Pt make these platinized carbon nanostructures (CNPs/Pt) a promising candidate in photocatalytic water splitting. The photocatalytic activity was evaluated using ethanol as the sacrificial donor. The photocatalyst has shown remarkable activity for hydrogen production under UV-visible light while retaining its stability for nearly 70 h. The broadband absorption of CNPs, along with the Surface Plasmon Resonance (SPR) effect of PtNPs singly and in composites has pronounced influence on the photocatalytic activity, which has not been explored earlier. The steady rate of hydrogen was observed to be 20 mu mol h(-1) with an exceptional cumulative hydrogen yield of 32.16 mmol h(-1) g(-1) observed for CNPs/Pt, which is significantly higher than that reported for carbon-based systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Poly(ether imine) dendritic macromolecules were undertaken to study the reversible dendrimer monomer-megamer assembly-disassembly in aqueous solutions. Synthesis of thiol functionalized poly(ether imine) (PETIM) dendrimers and their covalent aggregation behavior in the aqueous solution of ethanol/water (2:1) is demonstrated. The dendritic megamers were characterized using microscopic techniques. Kinetics of the aggregation behavior was followed using turbidity measurements, light-scattering and atomic force microscopic techniques. Inherent luminescence behavior of PETIM dendrimer monomers was retained in the dendrimer megamers also, which allowed visualization of the megamers through confocal microscopy. Extent of thiol functionalities that remained after the megamer assembly was estimated through Ellman's assay. Subsequent to megamer assembly, disassembly of megamers to dendrimer monomers was conducted, using dithiothreitol reagent. Water-insoluble sudan I dye was encapsulated in dendrimer megamer and subsequent release profile was assessed during the disassembly in aqueous solutions. The studies were conducted using first, second and third generations, representing 4, 8 and 16 sulfhydryl groups at their peripheries of dendrimers, respectively. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new cell permeable quinazoline based receptor (1) selectively senses HSO4- ions of nanomolar region in 0.1 M HEPES buffer (ethanol-water: 1/5, v/v) at biological pH over other competitive ions through the proton transfer followed by hydrogen bond formation and subsequent anion coordination to yield the LHSO4]-LH+center dot 3H(2)O (2) ensemble, which has been crystallographically characterised to ensure the structure property relationship. This non-cytotoxic HSO4- ion selective biomarker has great potential to recognize the intercellular distribution of HSO4- ions in HeLa cells under fluorescence microscope.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Increasing nitrate concentrations in ground water is deleterious to human health as ingestion of such water can cause methemoglobinemia in infants and even cancer in adults (desirable limit for nitrate as NO3 - 45 mg/L, IS code 10500-1991). Excess nitrate concentrations in ground water is contributed by reason being disposal of sewage and excessive use of fertilizers. Though numerous technologies such as reverse osmosis, ion exchange, electro-dialysis, permeable reactive barriers using zerovalent iron etc exists, nitrate removal continues to be one of challenging issue as nitrate ion is highly mobile within the soil strata. The tapping the denitrification potential of soil denitrifiers which are inherently available in the soil matrix is the most sustainable approach to mitigate accumulation of nitrate in ground water. The insitu denitrification of sand and bentonite enhanced sand (bentonite content = 5%) in presence of easily assimilable organic carbon such as ethanol was studied. Batch studies showed that nitrate reduction by sand follows first order kinetics with a rate constant 5.3x10(-2) hr(-1) and rate constant 4.3 x 10(-2) hr(-1) was obtained for bentonite-enhanced sand (BS) at 25 degrees C. Filter columns (height = 5 cm and diameter = 8.2 cm) were constructed using sand and bentonite-enhanced sand as filter media. The filtration rate through both the filter columns was maintained at average value of 2.60 cm/h. The nitrate removal rates through both the filter media was assessed for solution containing 22.6 mg NO3-N/L concentrations while keeping C/N mass ratio as 3. For sand filter column, the nitrate removal efficiency reached the average value of 97.6% after passing 50 pore volumes of the nitrate solution. For bentonite-enhanced sand filter column, the average nitrate removal efficiency was 83.5%. The time required for effective operation for sand filter bed was 100 hours, while bentonite-enhanced sand filter bed did not require any maturation period as that of sand filter bed for effective performance because the presence of micropores in bentonite increases the hydraulic retention time of the solution inside the filter bed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, we have reported the synthesis of dahlia flower-like ZnO nanostructures consisting of human finger-like nanorods by the hydrothermal method at 120 degrees C and without using any capping agent. Optical properties of the samples, including UV-vis absorption and photoluminescence (PL) emission characteristics are determined by dispersing the samples in water as well as in ethanol media. The quenching of PL emission intensity along-with the red shifting of the PL emission peak are observed when the samples are dispersed in water in comparison to those obtained after dispersing the samples in ethanol. It has been found that PL emission characteristic, particularly the spectral nature of PL emission, of the samples remains almost unaltered (except some improvement in UV PL emission) even after thermally annealing it for 2 h at the temperature of 300 degrees C. Also the synthesized powder samples, kept in a plastic container, showed a very stable PL emission even after 15 months of synthesis. Therefore, the synthesized samples might be useful for their applications in future optoelectronics devices. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents our work on developing an automated micro positioner and a low cost disposable dispenser module having a disposable dispenser core. The dispenser core is made up of Polydimethylsiloxane (PDMS). Once the user specifies the dispensing location in the Graphical User Interface (GUI), the movement of the micropositioner is automatic. The design, fabrication and characterization results of the dispenser module are also presented. The dispensing experiments are performed with Di-Ethanol Amine as the working reagent. The minimum dispensed volume achieved is about 4 nL.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tissue engineering deals with the regeneration of tissues for bone repair, wound healing, drug delivery, etc., and a highly porous 3D artificial scaffold is required to accommodate the cells and direct their growth. We prepared 3D porous calcium phosphate ((hydroxyapatite/beta-tricalcium phosphate)/agarose, (HAp/beta-TCP)/agarose) composite scaffolds by sol-gel technique with water (WBS) and ethanol (EBS) as solvents. The crystalline phases of HAp and beta-TCP in the scaffolds were confirmed by X-ray diffraction (XRD) analysis. The EBS had reduced crystallinity and crystallite size compared to WBS. WBS and EBS revealed interconnected pores of 1 mu m and 100 nm, respectively. The swelling ratio was higher for EBS in water and phosphate buffered saline (PBS). An in vitro drug loading/release experiment was carried out on the scaffolds using gentamicin sulphate (GS) and amoxicillin (AMX). We observed initial burst release followed by sustained release from WBS and EBS. In addition, GS showed more extended release than AMX from both the scaffolds. GS and AMX loaded scaffolds showed greater efficacy against Pseudomonas than Bacillus species. WBS exhibited enhanced mechanical properties, wettability, drug loading and haemocompatibility compared to EBS. In vitro cell studies showed that over the scaffolds, MC3T3 cells attached and proliferated and there was a significant increase in live MC3T3 cells. Both scaffolds supported MC3T3 proliferation and mineralization in the absence of osteogenic differentiation supplements in media which proves the scaffolds are osteoconducive. Microporous scaffolds (WBS) could assist the bone in-growth, whereas the presence of nanopores (EBS) could enhance the degradation process. Hence, WBS and EBS could be used as scaffolds for tissue engineering and drug delivery. This is a cost effective technique to produce scaffolds of degradable 3D ceramic-polymer composites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The exceptional solution processing potential of graphene oxide (GO) is always one of its main advantages over graphene in terms of its industrial relevance in coatings, electronics, and energy storage. However, the presence of a variety of functional groups on the basal plane and edges of GO makes understanding suspension behavior in aqueous and organic solvents, a major challenge. Acoustic spectroscopy can also measure zeta potential to provide unique insight into flocculating, meta-stable, and stable suspensions of GO in deionized water and a variety of organic solvents (including ethanol, ethylene glycol, and mineral oil). As expected, a match between solvent polarity and the polar functional groups on the GO surface favors stable colloidal suspensions accompanied by a smaller aggregate size tending toward disperse individual flakes of GO. This work is significant since it describes the characteristics of GO in solution and its ability to act as a precursor for graphene-based materials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new one-pot version of the titled reaction involves heating a mixture of a carbonyl compound, a phenylhydrazine, and the cation exchange resin Amberlite IR 120 in refluxing ethanol. A variety of enolizable aldehydes, and ketones and several substituted phenylhydrazines could thus be converted to the corresponding indoles in excellent yields (70-88%). Reaction times were typically 6-10 h, with the resin being then filtered off and the product isolated after minimal workup.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The self-assembly of p-pyridyl-ended oligo-p-phenylenevinylenes (OPVs) in ethanol leads to the formation of either hollow or solid microrods. The corresponding protonated OPVs with n-butyl chains induce transparent gelation and also gel phase crystallization owing to various synergistic noncovalent interactions. The chloride ion-selective gelation, AIEE and stimuli responsiveness of the gel are also observed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A supporting electrolyte based on lithium perchlorate has been functionalized with graphene (ionic liquid functionalized graphene (IFGR)) by facile electrochemical exfoliation of graphite rods in aq. LiClO4 solution. Poly(3,4-ethylenedioxythiophene) (PEDOT)-IFGR films were prepared by electropolymerization of EDOT monomer with IFGR as supporting electrolyte in ethanol at static potential of 1.5 V. The Raman, SEM, and XPS analysis of PEDOT-IFGR film confirmed the presence of functionalized graphene in the film. The PEDOT-IFGR films showed good electrochemical properties, better ionic and electrical conductivity, significant band gap, and excellent spectroelectrochemical and electrochromic properties. The electrical conductivity of PEDOT-IFGR film was measured as about 3968 S cm(-1). PEDOT-IFGR films at reduced state showed strong and broad absorption in the whole visible region and remarkable absorption at near-IR region. PEDOT-IFGR film showed electrochromic response between transmissive blue and darkish gray at redox potential. The color contrast (%T) between fully reduced and oxidized states of PEDOT-IFGR film is 25 % at lambda (max) of 485 nm. The optical switching stability of PEDOT-IFGR film has retained 80 % of its electroactivity even after 500 cycles.