980 resultados para Enteroaggregative E. coli
Resumo:
Faithful replication of DNA from one generation to the next is crucial for long-term species survival. Genomic integrity in prokaryotes, archaea and eukaryotes is dependent on efficient and accurate catalysis by multiple DNA polymerases. Escherichia coli possesses five known DNA polymerases (Pol). DNA polymerase III holoenzyme is the major replicative polymerase of the Escherichia coli chromosome (Kornberg, 1982). This enzyme contains two Pol III cores that are held together by a t dimer (Studwell-Vaughan and O’Donnell, 1991). The core is composed of three different proteins named α-, ε- and θ-subunit. The α-subunit, encoded by dnaE, contains the catalytic site for DNA polymerisation (Maki and Kornberg, 1985), the ε-subunit, encoded by dnaQ, contains the 3′→5′ proofreading exonuclease (Scheuermann, et al., 1983) and the θ-subunit, encoded by hole, that has no catalytic activity (Studwell-Vaughan, and O'Donnell, 1983). The three-subunit α–ε–θ DNA pol III complex is the minimal active polymerase form purified from the DNA pol III holoenzyme complex; these three polypeptides are tightly associated in the core (McHenry and Crow, 1979) Despite a wealth of data concerning the properties of DNA polymerase III in vitro, little information is available on the assembly in vivo of this complex enzyme. In this study it is shown that the C-terminal region of the proofreading subunit is labile and that the ClpP protease and the molecular chaperones GroL and DnaK control the overall concentration in vivo of ε. Two α-helices (comprising the residues E311-M335 and G339-D353, respectively) of the N-terminal region of the polymerase subunit were shown to be essential for the binding to ε. These informations could be utilized to produce a conditional mutator strain in which proofreading activity would be titrated by a a variant that can only bind e and that is polymerase-deficient. In this way the replication of DNA made by DNA Pol-III holoenzyme would accordingly become error-prone.
Resumo:
The H+/ATP ratio in the catalysis of ATP synthase has generally been considered a fixed parameter. However, Melandri and coworkers have recently shown that, in the ATP synthase of the photosynthetic bacterium Rb.capsulatus, this ratio can significantly decrease during ATP hydrolysis when the concentration of either ADP or Pi is maintained at a low level (Turina et al., 2004). The present work has dealt with the ATP synthase of E.coli, looking for evidence of this phenomenon of intrinsic uncoupling in this organism as well. First of all, we have shown that the DCCD-sensitive ATP hydrolysis activity of E.coli internal membranes was strongly inhibited by ADP and Pi, with a half-maximal effect in the submicromolar range for ADP and at 140 µM for Pi. In contrast to this monotonic inhibition, however, the proton pumping activity of the enzyme, as estimated under the same conditions by the fluorescence quenching of the ΔpH-sensitive probe ACMA, showed a clearly biphasic progression, both for Pi, increasing from 0 up to approximately 200 µM, and for ADP, increasing from 0 up to a few µM. We have interpreted these results as indicating that the occupancy of ADP and Pi binding sites shifts the enzyme from a partially uncoupled state to a fully coupled state, and we expect that the ADP- and Pi-modulated intrinsic uncoupling is likely to be a general feature of prokaryotic ATP synthases. Moreover, the biphasicity of the proton pumping data suggested that two Pi binding sites are involved. In order to verify whether the same behaviour could be observed in the isolated enzyme, we have purified the ATP synthase of E.coli and reconstituted it into liposomes. Similarly as observed in the internal membrane preparation, in the isolated and reconstituted enzyme it was possible to observe inhibition of the hydrolytic activity by ADP and Pi (with half-maximal effects at few µM for ADP and at 400 µM for Pi) with a concomitant stimulation of proton pumping. Both the inhibition of ATP hydrolysis and the stimulation of proton pumping as a function of Pi were lost upon ADP removal by an ADP trap. These data have made it possible to conclude that the results obtained in E.coli internal membranes are not due to the artefactual interference of enzymatic activities other than the ones of the ATP synthase. In addition, data obtained with liposomes have allowed a calibration of the ACMA signal by ΔpH transitions of known extent, leading to a quantitative evaluation of the proton pumping data. Finally, we have focused our efforts on searching for a possible structural candidate involved in the phenomenon of intrinsic uncoupling. The ε-subunit of the ATP-synthase is known as an endogenous inhibitor of the hydrolysis activity of the complex and appears to undergo drastic conformational changes between a non-inhibitory form (down-state) and an inhibitory form (up-state)(Rodgers & Wilce, 2000; Gibbons et al., 2000). In addition, the results of Cipriano & Dunn (2006) indicated that the C-terminal domain of this subunit played an important role in the coupling mechanism of the pump, and those of Capaldi et al. (2001), Suzuki et al. (2003) were consistent with the down-state showing a higher hydrolysis-to-synthesis ratio than the up-state. Therefore, we decided to search for modulation of pumping efficiency in a C-terminally truncated ε mutant. A low copy number expression vector has been built, carrying an extra copy of uncC, with the aim of generating an ε-overexpressing E.coli strain in which normal levels of assembly of the mutated ATP-synthase complex would be promoted. We have then compared the ATP hydrolysis and the proton pumping activity in membranes prepared from these ε-overexpressing E.coli strains, which carried either the WT ε subunit or the ε88-stop truncated form. Both strains yielded well energized membranes. Noticeably, they showed a marked difference in the inhibition of hydrolysis by Pi, this effect being largely lost in the truncated mutant. However, pre-incubation of the mutated enzyme with ADP at low nanomolar concentrations (apparent Kd = 0.7nM) restored the hydrolysis inhibition, together with the modulation of intrinsic uncoupling by Pi, indicating that, contrary to wild-type, during membrane preparation the truncated mutant had lost the ADP bound at this high-affinity site, evidently due to a lower affinity (and/or higher release) for ADP of the mutant relative to wild type. Therefore, one of the effects of the C-terminal domain of ε appears to be to modulate the affinity of at least one of the binding sites for ADP. The lack of this domain does not appear so much to influence the modulability of coupling efficiency, but instead the extent of this modulation. At higher preincubated ADP concentrations (apparent Kd = 117nM), the only observed effects were inhibition of both hydrolysis and synthesis, providing a direct proof that two ADP-binding sites on the enzyme are involved in the inhibition of hydrolysis, of which only the one at higher affinity also modulates the coupling efficiency.
Resumo:
Der Sauerstoffsensor FNR (Fumarat-Nitratreduktase-Regulator) von Escherichia coli spielt eine wichtige Rolle beim Umschalten vom aeroben zum anaeroben Stoffwechsel. FNR ist ein Transkriptionsregulator, der im aktiven Zustand ein [4Fe4S]-Zentrum besitzt. Bei Kontakt mit Sauerstoff zerfällt das [4Fe4S]- zu einem [2Fe2S]-Zentrum und führt zum Verlust der Aktivität von FNR. Die Reaktionen, die zum Aufbau des [4Fe4S]-Zentrums und der reduktiven Aktivierung von aerob und anaerob isoliertem apoFNR führen, wurden in vivo und in vitro untersucht. Die Einfluß in vivo von Glutathion auf die Funktion von FNR und die Rolle von Glutathion beim Aufbau des [4Fe4S]-Zentrums in gereinigtem apoFNR zeigen die wichtige Bedeutung von Glutathion bei der de novo Assemblierung von [4Fe4S]FNR und bei der reduktiven Aktivierung von sauerstoff-inaktiviertem FNR. Die energetischen Parameter von E. coli und ihre Änderungen beim Übergang vom aeroben zum anaeroben Stoffwechsel wurden untersucht. Das elektrochemische Protonenpotential delta-p über der Cytoplasmamembran wurde im Gleichgewichtszustand in der aeroben Atmung und anaeroben Nitrat-, Fumarat- und Dimethylsulfoxid-Atmung bestimmt. Delta-p betrug in der aeroben Atmung -160 mV, in der anaeroben Atmung sank delta-p entgegen früheren Vermutungen lediglich um 20 mV. Die geringen Änderungen von delta-p können deshalb vermutlich nicht als regulatorisches Signal für das Umschalten vom aeroben zum anaeroben Stoffwechsel genutzt werden.
Resumo:
Das Zweikomponentenregulationssystem DcuSR kontrolliert die Expression der wichtigsten fumaratinduzierten Gene in Escherichia coli. Die Gene dcuB und dctA, die fürDicarboxylatcarrier kodieren, sowie das Fumaratreduktase-Operon (frd), sind Zielgene für DcuSR. DcuS ist eine membranständige Sensorkinase mit einer großen periplasmatischen Domäne. NMR-spektroskopische Untersuchungen dieser Domäne zeigen Alpha-Helices und Beta-Faltblätter. Für die Fumaratbindung wichtige Aminosäuren wurden durch Mutagenese identifiziert. Gereinigtes DcuS wurde in Liposomen rekonstituiert. In Anwesenheit von ATP wird DcuS autophosphoryliert. Der Phosphatrest kann dann auf DcuR übertragen werden und beweist somit die Aktivität dieses in vitro Testsystems.Der Transport von C4-Dicarboxylaten erfolgt unter anaeroben Bedingungen durch die sekundären Carrier DcuA, DcuB und DcuC. Es konnte ein weiteres Protein (DcuD) identifiziert werden, das hohe Sequenzähnlichkeit zu DcuC aufweist. Eine dcuD-Mutante zeigte keinen Phänotyp und überproduziertes DcuD konnte den Ausfall der anderen Dcu-Carrier nicht kompensieren. DcuD ist damit ein kryptisches Mitglied der Dcu-Carrierfamilie. Unter aeroben Bedingungen katalysiert DctA den Transport von C4-Dicarboxylaten. Dennoch können dctA-Mutanten noch mit Succinat wachsen. Die Diffusionsrate von Succinat durch Membranen wurde bestimmt. Sie ist um Größenordnungen niedriger als der Transport in der Mutante. Bei dem DctA unabhängigen Transportsystem handelt es sich um einen H+/Succinat2-Symporter, der bei saurem pH aktiv ist und viele Eigenschaften eines Monocarboxylatcarriers aufweist.
Resumo:
Das lrhA-Gen von E. coli kodiert für einen Transkriptionsregulator der LysR-Familie. Die Funktion von LrhA war ungeklärt und sollte durch Vergleich der Gesamt-mRNA aus einem E. coli-Wildtyp und einer isogenen lrhA-Mutante mit Hilfe von Genomanalysen untersucht werden. In der lrhA-Mutante war der mRNA-Gehalt vieler Gene um den Faktor 3 bis 80 erhöht. Es handelt sich um Flagellen-, Motilitäts- und Chemotaxisgene, bzw. um Gene der Typ 1 Fimbrien. Diese Ergebnisse wurden in Expressionsmessungen bestätigt. LrhA war in der Lage an den Promotor von flhDC zu binden, aber nicht an die Promotoren der übrigen Gene für Motilität und Chemotaxis. FlhDC kodiert für den übergeordneten Regulator FlhD2C2 der Fagellensynthese.LrhA war außerdem in der Lage an die Promotoren der Gene für Typ 1 Fimbrien fimA und fimE zu binden. Typ 1 Fimbrien stellen in E. coli Virulenzfaktoren dar. Eine Regulation weiterer Virulenzfaktoren durch LrhA konnte in DNA-Pathoarrays ausgeschlossen werden.LrhA ist damit ein wichtiger Transkriptionsregulator, der die Expression der Gene für Flagellen, Motilität, Chemotaxis und Typ 1 Fimbrien reguliert. FlhDC, fimA und fimE stellen dabei direkte Zielgene von LrhA dar. Außerdem konnte eine positive Autoregulation von LrhA nachgewiesen werden.
Resumo:
Das Elektronentransportsystem von E. coli enthält zwei verschiedene NADH-Dehydrogenasen. Die NADH-DehydrogenaseI (nuoA-N) koppelt im Gegensatz zur NADH-DehydrogenaseII die Oxidation von NADH an eine Protonentranslokation und trägt zur Energiekonservierung bei. Die NADH-DehydrogenaseI wird über die Promotoren P1 und P2 exprimiert und besitzt mehrere Bindestellen für verschiedene Regulatoren.Die separate Klonierung der Promotoren, lacZ-Fusionen, Inaktivierung von Transkriptionsfaktoren, sowie die Nutzung mutierter Regulatorbindestellen in vivo zeigen, dass P1 im wesentlichen die Expressionshöhe bestimmt und ist unter aeroben und anaeroben Bedingungen aktiv. P2 trägt in wesentlich geringerem Maße als P1 zur Expression des Enzyms bei. Er ist stark abhängig von ArcA und IHF. Beide Promotoren wirken nicht additiv.Unter anaeroben Bedingungen wird die Transkription von nuo durch das Zweikomponenten-System ArcB/A reprimiert. ArcA bindet unabhängig und mit unterschiedlicher Affinität an die beiden Bindestellen arc1 und arc2. Von den 8 ArcA-Konsensussequenzen führen nur Mutationen der Konsensussequenzen arc1ab in vitro zu verminderter Bindungsaffinität von ArcA an die Bindestelle arc1. Dieselben führen in vivo unter anaeroben Bedingungen zur Derepression des Promotors P1 bzw. P1+P2. Unter aeroben Bedingungen zeigen nur Mutationen in arc2 eine Derepression, die nicht durch ArcA vermittelt wird. Der veröffentliche ArcA-Konsensus scheint deshalb hier in dieser einfachen Form nicht gültig zu sein.
Resumo:
The obligate intracellular pathogen Chlamydia trachomatis is a gram negative bacterium which infects epithelial cells of the reproductive tract. C. trachomatis is the leading cause of bacterial sexually transmitted disease worldwide and a vaccine against this pathogen is highly needed. Many evidences suggest that both antigen specific-Th1 cells and antibodies may be important to provide protection against Chlamydia infection. In a previous study we have identified eight new Chlamydia antigens inducing CD4-Th1 and/or antibody responses that, when combined properly, can protect mice from Chlamydia infection. However, all selected recombinant antigens, upon immunization in mice, elicited antibodies not able to neutralize Chlamydia infectivity in vitro. With the aim to improve the quality of the immune response by inducing effective neutralizing antibodies, we used a novel delivery system based on the unique capacity of E. coli Outer Membrane Vesicles (OMV) to present membrane proteins in their natural composition and conformation. We have expressed Chlamydia antigens, previously identified as vaccine candidates, in the OMV system. Among all OMV preparations, the one expressing HtrA Chlamydia antigen (OMV-HtrA), showed to be the best in terms of yield and quantity of expressed protein, was used to produce mice immune sera to be tested in neutralization assay in vitro. We observed that OMV-HtrA elicited specific antibodies able to neutralize efficiently Chlamydia infection in vitro, indicating that the presentation of the antigens in their natural conformation is crucial to induce an effective immune response. This is one of the first examples in which antibodies directed against a new Chlamydia antigen, other than MOMP (the only so far known antigen inducing neutralizing antibodies), are able to block the Chlamydia infectivity in vitro. Finally, by performing an epitope mapping study, we investigated the specificity of the antibody response induced by the recombinant HtrA and by OMV-HtrA. In particular, we identified some linear epitopes exclusively recognized by antibodies raised with the OMV-HtrA system, detecting in this manner the antigen regions likely responsible of the neutralizing effect.
Resumo:
Das Zweikomponentensystem DcuSR reguliert die Expression der Gene der anaeroben Fumaratatmung in E. coli in Abhängigkeit von externen C4-Dicarbonsäuren. Die membranständige Histidinkinase DcuS detektiert den Reiz und leitet ihn über die Membran an den Responseregulaor DcuR weiter, der die Aktivität der Zielgene reguliert. Das Substratspektrum von DcuS wurde näher untersucht und strukturelle Eigenschaften der Substrate sowie ihre Affinität zu DcuS bestimmt. Es wird vermutet, dass Histidinkinasen im aktiven Zustand als Dimere oder höhere Oligomere vorliegen. Der Oligomerisierungszustand von DcuS in der Membran wurde mittels EPR-Spektroskopie untersucht. Es wurden funktionelle Cysteinmutanten von DcuS hergestellt, die nur an bestimmten Positionen der periplasmatischen Domäne Cysteinreste, aber sonst keine weiteren Cysteinreste, enthielten. Die Proteine wurden isoliert, über die Cysteinreste mit Nitroxiden markiert und in Liposomen rekonstituiert. Erste EPR-Messungen zeigten, dass rekonstituiertes DcuS in einem geordneten Zustand in der Membran vorliegt, der diskrete Abstände zwischen den Monomeren aufweist. Die Struktur von rekonstituiertem DcuS in der Membran soll durch Festkörper-NMR aufgeklärt werden. Ein geeignetes C-terminal verkürztes Konstrukt, DcuS-PD/PAS wurde zu diesem Zweck hergestellt. Das Protein ließ sich in hoher Reinheit isolieren und konnte wieder in Liposomen rekonstituiert werden. Vorbereitende NMR-Messungen zeigten, dass eine Strukturaufklärung an diesem Protein möglich ist. Weitere Strukturuntersuchungen werden zur Zeit durchgeführt.
Resumo:
FNR (Fumarat Nitratreduktase Regulator) ist der Sauerstoffsensor aus Escherichia coli. Bisher waren zwei Formen von FNR bekannt, der aktive Zustand, ein Dimer mit je einem [4Fe4S]-Zentrum und ein inaktiver Zustand, in dem FNR als Monomer mit je einem [2Fe2S]-Zentrum vorliegt. Die Untersuchungen dieser Arbeit geben nun Hinweise, dass es mit apoFNR eine dritte physiologische Form von FNR gibt. Es wurde die Entstehung von apoFNR aus [4Fe4S]•FNR untersucht und die biochemischen Eigenschaften von apoFNR charakterisiert. ApoFNR konnte in vitro zu [4Fe4S]•FNR rekonstituiert werden, hierbei konnte die Lagphase der Rekonstitution durch Zusatz von Glutaredoxinen zum Rekonstitutionsansatz verkürzt werden. FNR, dessen Cysteinreste in vivo unter aeroben bzw. anaeroben Bedingungen mit 4-Acetamido-4´-Maleimidylstilbene-2,2´Disulfonsäure markiert wurden, zeigt auf SDS-Gelen einen Shift zu einer höheren Masse im Vergleich zu unmarkiertem FNR. Allerdings trat in aeroben Zellen eine zusätzliche Bande bei einer niedrigeren Masse auf. Es waren hier also weniger Cysteinreste markierbar. Weiterhin wurde mit NreB ein potentieller Sauerstoffsensor aus Staphylococcus carnosus untersucht. Es wurden Hinweise auf ein Eisen-Schwefel-Zentrum vom FNR-Typ als Cofaktor gefunden. Der Einbau dieses Cofaktors war abhängig von der Anwesenheit der Cysteinreste in NreB, von der Cysteindesulfurase NifSAV und von Eisenionen. Der Cofaktor war sauerstoffempfindlich und beeinflusste die Autophosphorylierung von NreB.
Resumo:
In E. coli dient L-Tartrat als Elektronenakzeptor während des anaeroben Wachstums und wird schließlich zu Succinat umgesetzt. Der sekundäre Carrier TtdT (YgjE) von E. coli ist ein Antiporter, der die Aufnahme von L-Tartrat im elektroneutralen Austausch gegen intrazelluläres Succinat katalysiert. TtdT besitzt eine hohe Substratspezifität und katalysiert den Transport von L-Tartrat und Succinat, nicht aber von meso- und D-Tartrat. Das Gen ttdT (ygjE) bildet mit den Genen ttdA und ttdB, welche für die L-Tartratdehydratase kodieren, ein Operon. Das benachbarte Gen ttdR (ygiP) kodiert für TtdR (YgiP), einen Tartrat-spezifischen Regulator vom LysR-Typ. TtdR reguliert die L-Tartratfermentation direkt durch Induktion des ttdABT-Operons und durch Autoregulation. TtdR stellt damit den Tartrat-spezifischen Regulator dar, der auf die Expression des ttdR ttdABT-Genclusters spezialisiert ist. Dagegen reguliert DcuSR, das Zweikomponentensystem für C4-Dicarboxylate, die L-Tartratfermentation indirekt durch die Regulation der Gene für die Fumaratatmung. YfaV und YeaV sind weitere potentielle Tartrattransporter. YfaV katalysiert vermutlich den Transport von C4-Dicarboxylaten, einschließlich Tartrat, unter aeroben und anaeroben Bedingungen. YeaV wird nur in Anwesenheit von L- und meso-Tartrat und unter aeroben Bedingungen gebildet. Die yeaUVWX-Gene unterliegen der trankriptionellen Regulation durch YeaT, dessen Gen yeaT vor yeaU liegt. YeaT ist wie TtdR ein Tartrat-spezifischer Regulator und besitzt eine signifikante Ähnlichkeit zu TtdR.
Resumo:
The recombinant expression of 19 different substructures of KLH in the prokaryotic sys-tem E. coli has been successfully achieved: each one of the eight single FUs a to h of both isoforms, KLH1 and KLH2, two substructures consisting of two consecutive FUs (KLH1-bc and KLH1-gh) as well as a cDNA encompassing KLH1-abc. All recombinant proteins, fused to an N-terminal 6xHis tag, have successfully been detected by immuno precipitation using monoclonal α-His-antibodies and polyclonal α-KLH1- and α-KLH2-antibodies. One exception remained: SP-KLH2-a, which was not detected by the α-His-antibodies. This allows speculations as to whether the coexpressed signal peptide can lead, at one hand, to the secretion of the recombinant protein, and on the other to the simultaneous cut-off of the leader peptide, which results in the splitting off of even more N-terminal 6xHis tag, leading to failed recognition by the appropriate antibodies. The comparison of native KLH with recombinantly expressed prokaryotic (E. coli) and eukaryotic (Sf9 insect cells) KLH was done using FU-1h. The weak detection by the polyclonal α-KLH1-antibodies of both recombinantly expressed proteins showed that the native protein was the best recognized. For the prokaryotic one, both the denaturation applied for solubilisation of the bacterial inclusion bodies and the inability of bacterial cells to add N-linked glycosylation, are the reason for the poor hybridization. In contrast, KLH1-h expressed in eukaryotic insect cells is likely to be glycosylated. The incubation with the α-KLH1-antibodies resulting in the same weak detection, however, revealed that the linked carbohydrate side chains are not those expected. The establishment of SOE-PCR, together with further improvement, has enabled the generation of a clone encompassing the complete subunit KLH1-abcdefgh. The se-quence analysis compared to the original KLH1 sequence showed, however, that the resulting recombinant protein is defective in two histidines, required for the copper bind-ing sites in FU-1b and FU-1d and in three disulfide bridges (FU-1a, FU-1b and FU 1g). This is due to polymerase-related nucleotide exchanges, resulting in a changed amino acid sequence. Nevertheless, all eight potential N-glycosylation sites are present, leading to the speculation that the recombinant protein can in theory be fully glycosylated, which is the most important aspect for the clinical applicability of recombinant KLH as an im-munotherapeutic agent. The improvement of this method elaborated during the present work indicates bright prospects for the future generation of a correct cDNA sequence encoding for the complete KLH2 subunit.
Resumo:
Escherichia coli kann C4-Dicarboxylate und andere Carbonsäuren als Substrate für den aeroben und anaeroben Stoffwechsel nutzen. Die Anwesenheit von C4-Dicarboxylaten im Außenmedium wird über das Zweikomponentensystem DcuSR, bestehend aus der membranständigen Sensorkinase DcuS und dem cytoplasmatischen Responseregulator DcuR, erkannt. Die Bindung von C4-Dicarboxylaten an die periplasmatische Domäne von DcuS führt zu einer Induktion der Zielgene. Hierzu zählen die Gene für den anaeroben Fumarat/Succinat-Antiporter DcuB (dcuB), die anaerobe Fumarase (fumB) und die Fumaratreduktase (frdABCD). Unter aeroben Bedingungen stimuliert DcuSR die Expression des dctA Gens, das für den aeroben C4-Dicarboxylat-Carrier DctA kodiert. Für den Carrier DcuB konnte eine regulatorische Funktion bei der Expression der DcuSR-regulierten Gene gezeigt werden. Die Inaktivierung des dcuB Gens führte bereits ohne Fumarat zu einer maximalen Expression einer dcuB´-´lacZ Reportergenfusion und anderer DcuSR-abhängiger Gene. Diese Stimulierung erfolgte nur in einem dcuS-positiven Hintergrund. DcuB unterscheidet sich damit von den alternativen Carriern DcuA und DcuC, die diesen Effekt nicht zeigten. Mithilfe ungerichteter Mutagenese wurden DcuB-Punktmutanten hergestellt (Thr394Ile und Asp398Asn), die eine Geninduktion verursachten, aber eine intakte Transportfunktion besaßen. Dies zeigt, dass der regulatorische Effekt von DcuB unabhängig von dessen Transportfunktion ist. Durch gerichtete Mutagenese wurde die Funktion einer Punktmutation (Thr394) näher charakterisiert. Es werden zwei Modelle zur Membrantopologie von DcuB und der Lage der Punktmutationen im Protein vorgestellt. Da DcuB seine regulatorische Funktion über eine Interaktion mit DcuS vermitteln könnte, wurden mögliche Wechselwirkungen zwischen DcuB und DcuS als auch DcuR mithilfe von Two-Hybrid-Systemen untersucht. Für biochemische Untersuchungen von DcuB wurde außerdem die Expression des Proteins in vivo und in vitro versucht. Unter aeroben Bedingungen beeinflusst der C4-Dicarboxylat-Carrier DctA die Expression der DcuSR-abhängigen Gene. Eine Mutation des dctA Gens bewirkte eine stärkere Expression einer dctA´-´lacZ Reportergenfusion im Vergleich zum Wildtyp. Diese Expression nahm in einem dcuS-negativen Hintergrund ab, die Succinat-abhängige Induktion blieb jedoch erhalten. Unter anaeroben Bedingungen kann das dctA Gen auch durch Inaktivierung von DcuB induziert werden. Es wird ein Modell vorgestellt, das die Beteiligung beider Carrier an der DcuSR-abhängigen Regulation erklärt.
Resumo:
Synthetic biology has recently had a great development, many papers have been published and many applications have been presented, spanning from the production of biopharmacheuticals to the synthesis of bioenergetic substrates or industrial catalysts. But, despite these advances, most of the applications are quite simple and don’t fully exploit the potential of this discipline. This limitation in complexity has many causes, like the incomplete characterization of some components, or the intrinsic variability of the biological systems, but one of the most important reasons is the incapability of the cell to sustain the additional metabolic burden introduced by a complex circuit. The objective of the project, of which this work is part, is trying to solve this problem through the engineering of a multicellular behaviour in prokaryotic cells. This system will introduce a cooperative behaviour that will allow to implement complex functionalities, that can’t be obtained with a single cell. In particular the goal is to implement the Leader Election, this procedure has been firstly devised in the field of distributed computing, to identify the process that allow to identify a single process as organizer and coordinator of a series of tasks assigned to the whole population. The election of the Leader greatly simplifies the computation providing a centralized control. Further- more this system may even be useful to evolutionary studies that aims to explain how complex organisms evolved from unicellular systems. The work presented here describes, in particular, the design and the experimental characterization of a component of the circuit that solves the Leader Election problem. This module, composed of an hybrid promoter and a gene, is activated in the non-leader cells after receiving the signal that a leader is present in the colony. The most important element, in this case, is the hybrid promoter, it has been realized in different versions, applying the heuristic rules stated in [22], and their activity has been experimentally tested. The objective of the experimental characterization was to test the response of the genetic circuit to the introduction, in the cellular environment, of particular molecules, inducers, that can be considered inputs of the system. The desired behaviour is similar to the one of a logic AND gate in which the exit, represented by the luminous signal produced by a fluorescent protein, is one only in presence of both inducers. The robustness and the stability of this behaviour have been tested by changing the concentration of the input signals and building dose response curves. From these data it is possible to conclude that the analysed constructs have an AND-like behaviour over a wide range of inducers’ concentrations, even if it is possible to identify many differences in the expression profiles of the different constructs. This variability accounts for the fact that the input and the output signals are continuous, and so their binary representation isn’t able to capture the complexity of the behaviour. The module of the circuit that has been considered in this analysis has a fundamental role in the realization of the intercellular communication system that is necessary for the cooperative behaviour to take place. For this reason, the second phase of the characterization has been focused on the analysis of the signal transmission. In particular, the interaction between this element and the one that is responsible for emitting the chemical signal has been tested. The desired behaviour is still similar to a logic AND, since, even in this case, the exit signal is determined by the hybrid promoter activity. The experimental results have demonstrated that the systems behave correctly, even if there is still a substantial variability between them. The dose response curves highlighted that stricter constrains on the inducers concentrations need to be imposed in order to obtain a clear separation between the two levels of expression. In the conclusive chapter the DNA sequences of the hybrid promoters are analysed, trying to identify the regulatory elements that are most important for the determination of the gene expression. Given the available data it wasn’t possible to draw definitive conclusions. In the end, few considerations on promoter engineering and complex circuits realization are presented. This section aims to briefly recall some of the problems outlined in the introduction and provide a few possible solutions.
Resumo:
Synthetic Biology is a relatively new discipline, born at the beginning of the New Millennium, that brings the typical engineering approach (abstraction, modularity and standardization) to biotechnology. These principles aim to tame the extreme complexity of the various components and aid the construction of artificial biological systems with specific functions, usually by means of synthetic genetic circuits implemented in bacteria or simple eukaryotes like yeast. The cell becomes a programmable machine and its low-level programming language is made of strings of DNA. This work was performed in collaboration with researchers of the Department of Electrical Engineering of the University of Washington in Seattle and also with a student of the Corso di Laurea Magistrale in Ingegneria Biomedica at the University of Bologna: Marilisa Cortesi. During the collaboration I contributed to a Synthetic Biology project already started in the Klavins Laboratory. In particular, I modeled and subsequently simulated a synthetic genetic circuit that was ideated for the implementation of a multicelled behavior in a growing bacterial microcolony. In the first chapter the foundations of molecular biology are introduced: structure of the nucleic acids, transcription, translation and methods to regulate gene expression. An introduction to Synthetic Biology completes the section. In the second chapter is described the synthetic genetic circuit that was conceived to make spontaneously emerge, from an isogenic microcolony of bacteria, two different groups of cells, termed leaders and followers. The circuit exploits the intrinsic stochasticity of gene expression and intercellular communication via small molecules to break the symmetry in the phenotype of the microcolony. The four modules of the circuit (coin flipper, sender, receiver and follower) and their interactions are then illustrated. In the third chapter is derived the mathematical representation of the various components of the circuit and the several simplifying assumptions are made explicit. Transcription and translation are modeled as a single step and gene expression is function of the intracellular concentration of the various transcription factors that act on the different promoters of the circuit. A list of the various parameters and a justification for their value closes the chapter. In the fourth chapter are described the main characteristics of the gro simulation environment, developed by the Self Organizing Systems Laboratory of the University of Washington. Then, a sensitivity analysis performed to pinpoint the desirable characteristics of the various genetic components is detailed. The sensitivity analysis makes use of a cost function that is based on the fraction of cells in each one of the different possible states at the end of the simulation and the wanted outcome. Thanks to a particular kind of scatter plot, the parameters are ranked. Starting from an initial condition in which all the parameters assume their nominal value, the ranking suggest which parameter to tune in order to reach the goal. Obtaining a microcolony in which almost all the cells are in the follower state and only a few in the leader state seems to be the most difficult task. A small number of leader cells struggle to produce enough signal to turn the rest of the microcolony in the follower state. It is possible to obtain a microcolony in which the majority of cells are followers by increasing as much as possible the production of signal. Reaching the goal of a microcolony that is split in half between leaders and followers is comparatively easy. The best strategy seems to be increasing slightly the production of the enzyme. To end up with a majority of leaders, instead, it is advisable to increase the basal expression of the coin flipper module. At the end of the chapter, a possible future application of the leader election circuit, the spontaneous formation of spatial patterns in a microcolony, is modeled with the finite state machine formalism. The gro simulations provide insights into the genetic components that are needed to implement the behavior. In particular, since both the examples of pattern formation rely on a local version of Leader Election, a short-range communication system is essential. Moreover, new synthetic components that allow to reliably downregulate the growth rate in specific cells without side effects need to be developed. In the appendix are listed the gro code utilized to simulate the model of the circuit, a script in the Python programming language that was used to split the simulations on a Linux cluster and the Matlab code developed to analyze the data.