983 resultados para Endosseous implant
Resumo:
Os mecanismos biológicos desenvolvidos para aumentar a qualidade da regeneração óssea e da reparação tecidual de sítios periodontais específicos continuam a ser um desafio e têm sido complementado pela capacidade de adesão celular do colágeno do tipo I, promovida por um peptídeo sintético de adesão celular (P-15), associado a uma matriz inorgânica de osso (MIO) para formar MIO/P-15. O objetivo deste estudo foi avaliar a perda do nível clínico de inserção e a resposta da bolsa periodontal em dentes após 3 e 6 meses da aplicação de enxerto com MIO/P-15. Vinte e um cães do Hospital Veterinário da Universidade de São Paulo foram anestesiados para realização de tratamento periodontal e 132 faces dentais com perda de nível clínico de inserção foram tratadas, sendo que 36,4% (48 faces) receberam o peptídeo de adesão celular e 63,6% (84 faces) compuseram o grupo controle que recebeu tratamento convencional (retalho muco-gengival e aplainamento radicular). O procedimento foi documentado através de radiografia intra-oral e todas as sondagens de bolsas periodontais foram fotografadas. Depois de 3 e de 6 meses, os animais foram re-anestesiados a fim de se obter novas avaliações, radiografias, fotografias e sondagens periodontais. As 48 faces com perda de nível clínico de inserção que receberam material de enxertia apresentaram taxa de 40% de recuperação do nível clínico de inserção após 6 meses. O grupo controle de faces dentais não apresentou alteração do nível clínico de inserção. A face palatina foi a que apresentou melhor taxa de regeneração (40%) e os dentes caninos e molares mostraram as melhores respostas (57,14% e 65%, respectivamente). Não houve sinais de infecção pós-cirúrgica relacionadas à falta de higienização oral dos animais. Pode-se concluir que o MIO/P-15 auxilia na regeneração e re-aderência das estruturas periodontais, incluindo osso alveolar. Sua aplicação mostrou-se fácil e prática e a incidência de complicações pós-cirúrgicas foi baixa. Ainda assim, mais estudos e pesquisas são necessários para que se avalie a quantidade e a qualidade do osso e do ligamento periodontal formados.
Resumo:
INTRODUÇÃO: o acolhimento tem se constituído num potente disparador de mudanças. Este trabalho reflete a satisfação experimentada, resultante da atuação num ambiente altamente sinérgico e produtivo. OBJETIVO: implantação e implementação da assistência materno-neonatal a partir do acolhimento ao cliente interno. MÉTODO: realizou-se observação direta do cotidiano em setores distintos do Hospital Maternidade Interlagos (HMI) -SES/SP e seu Ambulatório. Foram realizadas entrevistas semi-estruturadas com dois profissionais da equipe multidisciplinar, as quais subsidiaram oficinas de humanização no ambiente hospitalar. Os profissionais foram divididos em áreas de exercício profissional, da administrativa à assistencial. RESULTADOS: ocorreu implantação do Comitê de Acolhimento e Humanização da Assistência Materno-Neonatal no Hospital Maternidade Interlagos, com participação dos líderes de acolhimento na gerência institucional, provendo melhor desempenho individual e coletivo no exercício laboral na Unidade Hospitalar
Resumo:
Introduction: The successful integration of stem cells in adult brain has become a central issue in modern neuroscience. In this study we sought to test the hypothesis that survival and neurodifferentiation of mesenchymal stem cells (MSCs) may be dependent upon microenvironmental conditions according to the site of implant in the brain. Methods: MSCs were isolated from adult rats and labeled with enhanced-green fluorescent protein (eGFP) lentivirus. A cell suspension was implanted stereotactically into the brain of 50 young rats, into one neurogenic area (hippocampus), and into another nonneurogenic area (striatum). Animals were sacrificed 6 or 12 weeks after surgery, and brains were stained for mature neuronal markers. Cells coexpressing NeuN (neuronal specific nuclear protein) and GFP (green fluorescent protein) were counted stereologically at both targets. Results: The isolated cell population was able to generate neurons positive for microtubule-associated protein 2 (MAP2), neuronal-specific nuclear protein (NeuN), and neurofilament 200 (NF200) in vitro. Electrophysiology confirmed expression of voltage-gated ionic channels. Once implanted into the hippocampus, cells survived for up to 12 weeks, migrated away from the graft, and gave rise to mature neurons able to synthesize neurotransmitters. By contrast, massive cell degeneration was seen in the striatum, with no significant migration. Induction of neuronal differentiation with increased cyclic adenosine monophosphate in the culture medium before implantation favored differentiation in vivo. Conclusions: Our data demonstrated that survival and differentiation of MSCs is strongly dependent upon a permissive microenvironment. Identification of the pro-neurogenic factors present in the hippocampus could subsequently allow for the integration of stem cells into nonpermissive areas of the central nervous system.
Resumo:
Introduction: In women showing impaired fertility, a decreased response to ovarian stimulation is a major problem, limiting the number of oocytes to be used for assisted reproduction techniques (ART). Despite the several definitions of poor response, it is still a matter of debate whether young poor responder patients also show a decrease in oocyte quality. The objective in this study was to investigate whether poor ovarian response to the superstimulation protocol is accompanied by impaired oocyte quality. Material and methods: This study included 313 patients younger than 35 years old, undergoing intracytoplasmic sperm injection. Patients with four or fewer MII oocytes (poor-responder group, PR, n = 57) were age-matched with normoresponder patients (NR, n = 256). Results: A higher rate of oocyte retrieval and a trend towards an increase in MII oocyte rate were observed in the NR group when compared to the PR group (71.6 +/- 1.1% and 74.1 +/- 1.0% vs. 56.3 +/- 2.9% and 66.5 +/- 3.7%; p < 0.0001 and p = 0.056, respectively). A trend toward increased implantation rates was observed in the NR group when compared to the PR group (44 and 24.5 +/- 2.0% vs. 28.8 and 16.4 +/- 3.9%; p = 0.0305 and p = 0.0651, respectively). Conclusions: Low response to ovarian stimulation is apparently not related to impaired oocyte quality. However, embryos produced from poor responder oocytes show impaired capacity to implant and to carry a pregnancy to term.
Resumo:
Objective: To describe the ultrastructure of the interface between periodontal tissues and titanium mini-implants in rat mandibles. Materials and Methods: A titanium mini-implant was placed between the buccal roots of the mandibular first molar of 24 adult rats. After 21, 30, 45, 60, 90, and 120 days of implantation, the mandibular portion was removed and fixed in cacodylate-buffered 2% glutaraldehyde + 2.5% formaldehyde. The material was decalcified and processed for scanning and transmission electron microscopy. Results: Ultrastructural analysis revealed a thin cementum-like layer at longer times after implantation at the areas in which the periodontal ligament was in contact with the implant. Conclusions: The alveolar bone and the periodontal ligament reorganized their constituents around the implant, and a thin cementum-like layer was formed at longer times after implantation at the areas in which the periodontal ligament was in contact with the implant. (Angle Orthod. 2010;80:459-435.)
Resumo:
Purpose: The purpose of this work was to evaluate the potential of substituting autogenous bone (AB) by bone marrow aspirate concentrate (BMAC). Both AB and BMAC were tested in combination with a bovine bone mineral (BBM) for their ability of new bone formation (NBF) in a multicentric, randomized, controlled, clinical and histological noninferiority trial. Materials and Methods: Forty-five severely atrophied maxillary sinus from 26 patients were evaluated in a partial cross-over design. As test arm, 34 sinus of 25 patients were augmented with BBM and BMAC containing mesenchymal stem cells. Eleven control sinus from 11 patients were augmented with a mixture of 70% BBM and 30% AB. Biopsies were obtained after a 3-4-month healing period at time of implant placement and histomorphometrically analyzed for NBF. Results: NBF was 14.3%+/- 1.8% for the control and nonsignificantly lower (12.6%+/- 1.7%) for the test (90% confidence interval: -4.6 to 1.2). Values for BBM (31.3%+/- 2.7%) were significantly higher for the test compared with control (19.3%+/- 2.5%) (p < 0.0001). Nonmineralized tissue was lower by 3.3% in the test compared with control (57.6%; p = 0.137). Conclusions: NBF after 3-4 months is equivalent in sinus, augmented with BMAC and BBM or a mixture of AB and BBM. This technique could be an alternative for using autografts to stimulate bone formation.
Resumo:
Dental implant materials are required to enable good apposition of bone and soft tissues. They must show sufficient resistance to chemical, physical and biological stress in the oral cavity to achieve good long-term outcomes. A critical issue is the apposition of the soft tissues, as they have provided a quasi-physiological closure of oral cavity. The present experiment was performed to study the peri-implant tissue response to non-submerged (1-stage) implant installation procedures. Two different implants types (NobelBiocare, NobelReplace (R) Tapered Groovy 4.3 x 10 mm and Replace (R) Select Tapered TiU RP 4.3 x 10 mm) were inserted into the right and left sides of 8 domestic pigs (Sus scrofa domestica) mandibles, between canines and premolars and immediately provided with a ceramic crown. Primary implant stability was determined using ressonance frequency analysis. Soft tissue parameters were assessed: sulcus depth (SDI) and junctional epithelium (JE). Following 70 days of healing, jaw sections were processed for histology and histomorphometric examination. Undecalcified histological sections demonstrated osseointegration with direct bone contact. The soft tissue parameters revealed no significant differences between the two implant types. The peri-implant soft tissues appear to behave similarly in both implant types.
Resumo:
Titanium and its alloys have been used in dentistry due to their excellent corrosion resistance and biocompatibility. It was shown that even a pure titanium metal and its alloys spontaneously form a bone-like apatite layer on their surfaces within a living body. The purpose of this work was to evaluate the growth of calcium phosphates at the surface of the experimental alloy Ti-7.5Mo. We produced ingots from pure titanium and molybdenum using an arc-melting furnace We then submitted these Ingots to heat treatment at 1100 degrees C for one hour, cooled the samples in water, and cold-worked the cooled material by swaging and machining. We measured the media roughness (Ra) with a roughness meter (1.3 and 2.6 mu m) and cut discs (13 mm in diameter and 4 mm in thickness) from each sample group. The samples were treated by biomimetic methods for 7 or 14 days to form an apatite coating on the surface. We then characterized the surfaces with an optical profilometer, a scanning electron microscope and contact angle measurements. The results of this study indicate that apatite can form on the surface of a Ti-7.5Mo alloy, and that a more complete apatite layer formed on the Ra = 2 6 mu m material. This Increased apatite formation resulted in a lower contact angle (C) 2010 Elsevier B.V. All rights reserved
Resumo:
Although titanium and Ti-6Al-4V alloy have been widely used as dental materials, possible undesirable effects such as cytotoxic reactions and neurological disorder due to metal release led to the development of more corrosion resistant and V and Al free titanium alloys, containing Nb, Zr, Mo and Ta atoxic elements. Fluoride containing products used in the prevention of plaque formation and dental caries can affect the stability of the passive oxide films formed on the Ti alloys. In this work, the corrosion behaviour of the new Ti-23Ta alloy has been evaluated in artificial saliva of different pH and fluoride concentration using electrochemical impedance spectroscopy. Electrochemical impedance spectroscopy study showed that the oxide film formed on the alloy in artificial saliva consists of an inner compact film and an outer porous layer. The corrosion resistance of Ti-23Ta alloy which is reduced by increasing F concentration or decreasing pH is related to the resistance of the inner compact layer. The presence of fluoride and low pH of the saliva enhance the porosity of the oxide film and its dissolution.
Resumo:
The influence of Al(2)O(3) addition and sintering parameters on the mechanical properties and cytotoxicity of tetragonal ZrO(2)-3 mol% Y(2)O(3) ceramics was evaluated. Samples containing 0, 10, 20 and 30 wt.% of Al(2)O(3) particles were prepared by cold uniaxial pressing (80 MPa) and sintered in air at 1500, 1550 and 1600 degrees C for 120 min. The effects of the sintering conditions on the microstructure were analyzed by X-ray diffraction analysis and scanning electron microscopy. Hardness and fracture toughness were determined by the Vickers indentation method and the mechanical resistance by four-point bending tests. As a preliminary biological evaluation, ""in vitro"" cytotoxicity tests were realized to determine the cytotoxic level of the ZrO(2)-Al(2)O(3) composites, using the neutral red uptake method with NCTC clones L929 from the American Type Culture Collection (ATCC) bank. Fully dense ceramic materials were obtained with a hardness ranging between 1340 HV and 1585 HV, depending on the amount of Al(2)O(3) in the ZrO(2) matrix. On the other hand, no significant influence of the Al(2)O(3) addition on fracture toughness was observed, exhibiting values near 8 MPa m(1/2) for all compositions and sintering conditions studied. The non-cytotoxic behavior, the elevated fracture toughness, the good bending strength (sigma(f) = 690 MPa) and the elevated Weibull`s modulus (m = 11) exhibited by the material, show that these ceramic composites are highly suitable biomaterials for dental implant applications. (C) 2008 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
Resumo:
Ti-6Al-4V alloy has been widely used in restorative surgery due to its high corrosion resistance and biocompatibility. Nevertheless, some studies showed that V and Al release in the organism might induce cytotoxic effects and neurological disorders, which led to the development of V-free alloys and both V- and Al-free alloys containing Nb, Zr, Ta, or Mo. Among these alloys, Ti-13Nb-13Zr alloy is promising due to its better biomechanical compatibility than Ti-6Al-4V. In this work, the corrosion behavior of Ti, Ti-6Al-4V, and Ti-xNb-13Zr alloys (x=5, 13, and 20) was evaluated in Ringer`s solution (pH 7.5) at 37 degrees C through open-circuit potential measurements, potentiodynamic polarization, and electrochemical impedance spectroscopy. Spontaneous passivity was observed for all materials in this medium. Low corrosion current densities (in the order of 10(-7) A/cm(2)) and high impedance values (in the order of 10(5) Omega cm(2) at low frequencies) indicated their high corrosion resistance. EIS results showed that the passivating films were constituted of an outer porous layer (very low resistance) and an inner compact layer (high resistance), the latter providing the corrosion resistance of the materials. There was evidence that the Ti-xNb-13Zr alloys were more corrosion resistant than both Ti and Ti-6Al-4V in Ringer`s solution.
Resumo:
Aiming to achieve the ideal time of ovum pick-up (OPU) for in vitro embryo production (IVP) in crossbred heifers, two Latin square design studies investigated the effect of ovarian follicular wave synchronization with estradiol benzoate (EB) and progestins. For each experiment, crossbred heifers stage of estrous cycle was synchronized either with a norgestomet ear implant (Experiment 1) or a progesterone intravaginal device (Experiment 2) for 7d, followed by the administration of 150 mu g D-cloprostenol. On Day 7, all follicles >3 mm in diameter were aspirated and implants/devices were replaced by new ones. Afterwards, implant/device replacement was conducted every 14 d. Each experiment had three treatment groups. In Experiment I (n = 12), heifers in Group 2X had their follicles aspirated twice a week and those in Groups 1X and 1X-EB were submitted to OPU once a week for a period of 28 d. Heifers from Group 1X-EB also received 2 mg EB i.m. immediately after each OPU session. In Experiment 2 (n = 11), animals from Group 0EB did not receive EB while heifers in Groups 2EB and 5EB received 2 and 5 mg of EB respectively, immediately after OPU. The OPU sessions were performed once weekly for 28 d. Therefore, in both experiments, four OPU sessions were performed in heifers aspirated once a week and in Experiment 1, eight OPU sessions were done in heifers aspirated twice a week. Additionally, during the 7-d period following follicular aspiration, ovarian ultrasonography examinations were conducted to measure diameter of the largest follicle and blood samples were collected for FSH quantification by RIA. In Experiment 1, all viable oocytes recovered were in vitro matured and fertilized. Results indicated that while progestin and EB altered follicular wave patterns, this treatment did not prevent establishment of follicular dominance on the ovaries of heifers during OPU at 7-d intervals. Furthermore, the proposed stage of follicular wave synchronization strategies did not improve the number and quality of the recovered oocytes, or the number of in vitro produced embryos. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Almost 30 years after the introduction of heart valve prostheses patients worldwide are benefiting from the implant of these devices. Among the various types of heart valves, the ones made of treated bovine pericardium have become a frequently used replacement of the heart`s native valve. Lyophilization, also known as freeze-drying, is an extremely useful technique for tissue storage for surgical applications. This article gives a brief overview on the current bovine pericardium lyophilization development, including the chemical modification to improve physical-chemical characteristics and the advanced technologies used to guarantee a high-quality product. It was shown that lyophilization process can be successfully applied as a method of bovine pericardium preservation and also as a technological tool to prepare new materials obtained by chemical modification of native tissues.
Resumo:
Diamond-like carbon (DLC), also known as amorphous hydrogenated carbon (a-C:H), are a class of materials with excellent mechanical, tribological and biological properties. When the DLC films are enhanced with other elements, all of these properties can be changed within a certain range. In this work, reactive magnetron sputtering was used to deposit W-DLC (hydrogenated tungsten carbide) films on Ti6A14V (implant material). Many films were made using pure tungsten (99.99%) target and different plasmas processes, with different ratio among argon and methane. It was possible to change the films composition (from pure amorphous carbon to carbon enhanced with tungsten) according to ratio of argon and methane plasma. Between all films processed, the carbon films enhanced with tungsten showed good results in the ""in vitro"" cytotoxicity testing. Raman spectroscopy was used to analyze the chemical bonds kinds and the chemical bonds quantities. The Rutherford Back Scattering (RBS) was used to analyze the films compositions. The chemical inertness was analyzed by scanning voltametry. W-DLC thin films obtained in these processes have low roughness, high chemical resistance, good adhesion and show a high biocompatibility, when compared with common DLC thin films. Hence we have concluded that the tungsten concentrations in the DLC films make an important role to improve the properties of the DLC layers. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
In this paper, we examine Si and Te ion implant damage removal in GaN as a function of implantation dose, and implantation and annealing temperature. Transmission electron microscopy shows that amorphous layers, which can result from high-dose implantation, recrystallize between 800 and 1100 °C to very defective polycrystalline material. Lower-dose implants (down to 5 × 1013 cm – 2), which are not amorphous but defective after implantation, also anneal poorly up to 1100 °C, leaving a coarse network of extended defects. Despite such disorder, a high fraction of Te is found to be substitutional in GaN both following implantation and after annealing. Furthermore, although elevated-temperature implants result in less disorder after implantation, this damage is also impossible to anneal out completely by 1100 °C. The implications of this study are that considerably higher annealing temperatures will be needed to remove damage for optimum electrical properties. ©1998 American Institute of Physics.