929 resultados para Elementary particle
Resumo:
Relativistic nuclear collisions data on two-particle correlations exhibit structures as function of relative azimuthal angle and rapidity. A unified description of these near-side and away-side structures is proposed for low to moderate transverse momentum. It is based on the combined effect of tubular initial conditions and hydrodynamical expansion. Contrary to expectations, the hydrodynamics solution shows that the high-energy density tubes (leftover from the initial particle interactions) give rise to particle emission in two directions and this is what leads to the various structures. This description is sensitive to some of the initial tube parameters and may provide a probe of the strong interaction. This explanation is compared with an alternative one where some triangularity in the initial conditions is assumed. A possible experimental test is suggested. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Models of the filtration phenomenon describe the mass balance in bed filtration in terms of particle removal mechanisms, and allow for the determination of global particle removal efficiencies. These models are defined in terms of the geometry and characteristic elements of granule collectors, particles and fluid, and also the composition of the balance of forces that act in the particle collector system. This work analyzes particles collection efficiency comparing downflow and upflow direct filtration, taking into account the contribution of the gravitational factor of the settling removal efficiency in future proposal of initial collection efficiency models for upflow filtration. A qualitative analysis is also made of the proposal for the collection efficiency models for particle removal in direct downflow and upflow filtration using a Computational Fluid Dynamics (CFD) tool. This analysis showed a strong influence of gravitational factor in initial collection efficiency (t = 0) of particles, as well as the reasons of their values to be smaller for upflow filtration in comparison with the downflow filtration.
Resumo:
In this Letter we analyze the energy distribution evolution of test particles injected in three dimensional (3D) magnetohydrodynamic (MHD) simulations of different magnetic reconnection configurations. When considering a single Sweet-Parker topology, the particles accelerate predominantly through a first-order Fermi process, as predicted in [3] and demonstrated numerically in [8]. When turbulence is included within the current sheet, the acceleration rate is highly enhanced, because reconnection becomes fast and independent of resistivity [4,11] and allows the formation of a thick volume filled with multiple simultaneously reconnecting magnetic fluxes. Charged particles trapped within this volume suffer several head-on scatterings with the contracting magnetic fluctuations, which significantly increase the acceleration rate and results in a first-order Fermi process. For comparison, we also tested acceleration in MHD turbulence, where particles suffer collisions with approaching and receding magnetic irregularities, resulting in a reduced acceleration rate. We argue that the dominant acceleration mechanism approaches a second order Fermi process in this case.
Resumo:
Wood is a material of great applicability in construction, with advantageous properties to form various structural systems, such as walls and roof. Most of the roof structural systems follow models that have remained unchanged for a long time. A roof modular system in distinguished materials is proposed: reforested wood (Pine), oriented strand board (OSB) and roof tiles made of recycled long-life packaging material in order to be applied in rural construction. In this alternative, besides the benefit of giving destination packages with long-life thermal comfort, it also highlights the use of reforestated wood being the cultivation of such species that provides incentive for agribusiness. The structural performance of this alternative was evaluated through computer modeling and test results of two modular panels. The analysis is based on the results of vertical displacements, deformations and stresses. A positive correlation between theoretical and experimental values was observed, indicating the model's feasibility for use in roof structures. Therefore, the modular system represents a solution to new architecture conceptions to rural construction, for example, storage construction, cattle handling and poultry, with benefits provided by prefabricated building systems.
Resumo:
Chemically resolved submicron (PM1) particlemass fluxes were measured by eddy covariance with a high resolution time-of-flight aerosolmass spectrometer over temperate and tropical forests during the BEARPEX-07 and AMAZE-08 campaigns. Fluxes during AMAZE-08 were small and close to the detection limit (<1 ng m−2 s−1) due to low particle mass concentrations (<1 μg m−3). During BEARPEX-07, concentrations were five times larger, with mean mid-day deposition fluxes of −4.8 ng m−2 s−1 for total nonrefractory PM1 (Vex,PM1 = −1 mm s−1) and emission fluxes of +2.6 ng m−2 s−1 for organic PM1 (Vex,org = +1 mm s−1). Biosphere–atmosphere fluxes of different chemical components are affected by in-canopy chemistry, vertical gradients in gas-particle partitioning due to canopy temperature gradients, emission of primary biological aerosol particles, and wet and dry deposition. As a result of these competing processes, individual chemical components had fluxes of varying magnitude and direction during both campaigns. Oxygenated organic components representing regionally aged aerosol deposited, while components of fresh secondary organic aerosol (SOA) emitted. During BEARPEX-07, rapid incanopy oxidation caused rapid SOA growth on the timescale of biosphere-atmosphere exchange. In-canopy SOA mass yields were 0.5–4%. During AMAZE-08, the net organic aerosol flux was influenced by deposition, in-canopy SOA formation, and thermal shifts in gas-particle partitioning.Wet deposition was estimated to be an order ofmagnitude larger than dry deposition during AMAZE-08. Small shifts in organic aerosol concentrations from anthropogenic sources such as urban pollution or biomass burning alters the balance between flux terms. The semivolatile nature of the Amazonian organic aerosol suggests a feedback in which warmer temperatures will partition SOA to the gas-phase, reducing their light scattering and thus potential to cool the region.
Resumo:
Diffusion is a common phenomenon in nature and generally is associated with a system trying to reach a local or a global equilibrium state, as a result of highly irregular individual particle motion. Therefore it is of fundamental importance in physics, chemistry and biology. Particle tracking in complex fluids can reveal important characteristics of its properties. In living cells, we coat the microbead with a peptide (RGD) that binds to integrin receptors at the plasma membrane, which connects to the CSK. This procedure is based on the hypothesis that the microsphere can move only if the structure where it is attached move as well. Then, the observed trajectory of microbeads is a probe of the cytoskeleton (CSK), which is governed by several factors, including thermal diffusion, pressure gradients, and molecular motors. The possibility of separating the trajectories into passive and active diffusion may give information about the viscoelasticity of the cell structure and molecular motors activity. And also we could analyze the motion via generalized Stokes-Einstein relation, avoiding the use of any active techniques. Usually a 12 to 16 Frames Per Second (FPS) system is used to track the microbeads in cell for about 5 minutes. Several factors make this FPS limitation: camera computer communication, light, computer speed for online analysis among others. Here we used a high quality camera and our own software, developed in C++ and Linux, to reach high FPS. Measurements were conducted with samples for 10£ and 20£ objectives. We performed sequentially images with different intervals, all with 2 ¹s exposure. The sequences of intervals are in milliseconds: 4 5 ms (maximum speed) 14, 25, 50 and 100 FPS. Our preliminary results highlight the difference between passive and active diffusion, since the passive diffusion is represented by a Gaussian in the distribution of displacements of the center of mass of individual beads between consecutive frames. However, the active process, or anomalous diffusion, shows as long tails in the distribution of displacements.
Resumo:
Events of new particle formation (NPF) in tropical boundary layer followed by consecutive growth towards Aitken mode size range are sparse compared to mid- latitudes Kulmala et al. (2004). This is also the case for rainforest environment. More often short episodes of elevated ultrafine and Aitken mode aerosol particle concentrations are observed their origin and the processes governing these episodes do however remain unclear. Based on observations performed in the Amazonian rainforest environment combined with statistical analysis we present a mechanism explaining the erratic appearance of ultra-fine aerosol in tropical boundary layer of the rainforest.
Resumo:
During the last decade advances in the field of sensor design and improved base materials have pushed the radiation hardness of the current silicon detector technology to impressive performance. It should allow operation of the tracking systems of the Large Hadron Collider (LHC) experiments at nominal luminosity (1034 cm-2s-1) for about 10 years. The current silicon detectors are unable to cope with such an environment. Silicon carbide (SiC), which has recently been recognized as potentially radiation hard, is now studied. In this work it was analyzed the effect of high energy neutron irradiation on 4H-SiC particle detectors. Schottky and junction particle detectors were irradiated with 1 MeV neutrons up to fluence of 1016 cm-2. It is well known that the degradation of the detectors with irradiation, independently of the structure used for their realization, is caused by lattice defects, like creation of point-like defect, dopant deactivation and dead layer formation and that a crucial aspect for the understanding of the defect kinetics at a microscopic level is the correct identification of the crystal defects in terms of their electrical activity. In order to clarify the defect kinetic it were carried out a thermal transient spectroscopy (DLTS and PICTS) analysis of different samples irradiated at increasing fluences. The defect evolution was correlated with the transport properties of the irradiated detector, always comparing with the un-irradiated one. The charge collection efficiency degradation of Schottky detectors induced by neutron irradiation was related to the increasing concentration of defects as function of the neutron fluence.
Resumo:
Several activities were conducted during my PhD activity. For the NEMO experiment a collaboration between the INFN/University groups of Catania and Bologna led to the development and production of a mixed signal acquisition board for the Nemo Km3 telescope. The research concerned the feasibility study for a different acquisition technique quite far from that adopted in the NEMO Phase 1 telescope. The DAQ board that we realized exploits the LIRA06 front-end chip for the analog acquisition of anodic an dynodic sources of a PMT (Photo-Multiplier Tube). The low-power analog acquisition allows to sample contemporaneously multiple channels of the PMT at different gain factors in order to increase the signal response linearity over a wider dynamic range. Also the auto triggering and self-event-classification features help to improve the acquisition performance and the knowledge on the neutrino event. A fully functional interface towards the first level data concentrator, the Floor Control Module, has been integrated as well on the board, and a specific firmware has been realized to comply with the present communication protocols. This stage of the project foresees the use of an FPGA, a high speed configurable device, to provide the board with a flexible digital logic control core. After the validation of the whole front-end architecture this feature would be probably integrated in a common mixed-signal ASIC (Application Specific Integrated Circuit). The volatile nature of the configuration memory of the FPGA implied the integration of a flash ISP (In System Programming) memory and a smart architecture for a safe remote reconfiguration of it. All the integrated features of the board have been tested. At the Catania laboratory the behavior of the LIRA chip has been investigated in the digital environment of the DAQ board and we succeeded in driving the acquisition with the FPGA. The PMT pulses generated with an arbitrary waveform generator were correctly triggered and acquired by the analog chip, and successively they were digitized by the on board ADC under the supervision of the FPGA. For the communication towards the data concentrator a test bench has been realized in Bologna where, thanks to a lending of the Roma University and INFN, a full readout chain equivalent to that present in the NEMO phase-1 was installed. These tests showed a good behavior of the digital electronic that was able to receive and to execute command imparted by the PC console and to answer back with a reply. The remotely configurable logic behaved well too and demonstrated, at least in principle, the validity of this technique. A new prototype board is now under development at the Catania laboratory as an evolution of the one described above. This board is going to be deployed within the NEMO Phase-2 tower in one of its floors dedicated to new front-end proposals. This board will integrate a new analog acquisition chip called SAS (Smart Auto-triggering Sampler) introducing thus a new analog front-end but inheriting most of the digital logic present in the current DAQ board discussed in this thesis. For what concern the activity on high-resolution vertex detectors, I worked within the SLIM5 collaboration for the characterization of a MAPS (Monolithic Active Pixel Sensor) device called APSEL-4D. The mentioned chip is a matrix of 4096 active pixel sensors with deep N-well implantations meant for charge collection and to shield the analog electronics from digital noise. The chip integrates the full-custom sensors matrix and the sparsifification/readout logic realized with standard-cells in STM CMOS technology 130 nm. For the chip characterization a test-beam has been set up on the 12 GeV PS (Proton Synchrotron) line facility at CERN of Geneva (CH). The collaboration prepared a silicon strip telescope and a DAQ system (hardware and software) for data acquisition and control of the telescope that allowed to store about 90 million events in 7 equivalent days of live-time of the beam. My activities concerned basically the realization of a firmware interface towards and from the MAPS chip in order to integrate it on the general DAQ system. Thereafter I worked on the DAQ software to implement on it a proper Slow Control interface of the APSEL4D. Several APSEL4D chips with different thinning have been tested during the test beam. Those with 100 and 300 um presented an overall efficiency of about 90% imparting a threshold of 450 electrons. The test-beam allowed to estimate also the resolution of the pixel sensor providing good results consistent with the pitch/sqrt(12) formula. The MAPS intrinsic resolution has been extracted from the width of the residual plot taking into account the multiple scattering effect.