Chemically Resolved Particle Fluxes Over Tropical and Temperate Forests


Autoria(s): Farmer, Delphine K; Chen, Qi; Kimmel, Joel R; Docherty, Kenneth S; Eiko, Nemitz; Artaxo Netto, Paulo Eduardo; Cappa, Christopher D; Martin, Scot T; Jimenez, Jose L
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

27/11/2013

27/11/2013

2013

Resumo

Chemically resolved submicron (PM1) particlemass fluxes were measured by eddy covariance with a high resolution time-of-flight aerosolmass spectrometer over temperate and tropical forests during the BEARPEX-07 and AMAZE-08 campaigns. Fluxes during AMAZE-08 were small and close to the detection limit (<1 ng m−2 s−1) due to low particle mass concentrations (<1 μg m−3). During BEARPEX-07, concentrations were five times larger, with mean mid-day deposition fluxes of −4.8 ng m−2 s−1 for total nonrefractory PM1 (Vex,PM1 = −1 mm s−1) and emission fluxes of +2.6 ng m−2 s−1 for organic PM1 (Vex,org = +1 mm s−1). Biosphere–atmosphere fluxes of different chemical components are affected by in-canopy chemistry, vertical gradients in gas-particle partitioning due to canopy temperature gradients, emission of primary biological aerosol particles, and wet and dry deposition. As a result of these competing processes, individual chemical components had fluxes of varying magnitude and direction during both campaigns. Oxygenated organic components representing regionally aged aerosol deposited, while components of fresh secondary organic aerosol (SOA) emitted. During BEARPEX-07, rapid incanopy oxidation caused rapid SOA growth on the timescale of biosphere-atmosphere exchange. In-canopy SOA mass yields were 0.5–4%. During AMAZE-08, the net organic aerosol flux was influenced by deposition, in-canopy SOA formation, and thermal shifts in gas-particle partitioning.Wet deposition was estimated to be an order ofmagnitude larger than dry deposition during AMAZE-08. Small shifts in organic aerosol concentrations from anthropogenic sources such as urban pollution or biomass burning alters the balance between flux terms. The semivolatile nature of the Amazonian organic aerosol suggests a feedback in which warmer temperatures will partition SOA to the gas-phase, reducing their light scattering and thus potential to cool the region.

This research was funded by NSF ATM-0723582 and ATM- 0919189, DOE (BER, ASR Program DE-SC0006035, and DE-FG02- 11ER65293), and the UK Natural Environment Research Council (NE/E007309/1). Delphine K. Farmer acknowledges a NOAA Climate & Global Change Postdoctoral Fellowship. Qi Chen acknowledges a NASA Earth and Space Science Fellowship. Paulo A. Artaxo acknowledges funding from FAPESP and CNPq.

Identificador

Aerosol Science and Technology, Philadelphia, v.47, n.7, p.818–830, 2013

http://www.producao.usp.br/handle/BDPI/43419

10.1080/02786826.2013.791022

http://dx.doi.org/10.1080/02786826.2013.791022

Idioma(s)

eng

Publicador

Taylor & Francis

Philadelphia

Relação

Aerosol Science and Technology

Direitos

restrictedAccess

American Association for Aerosol Research

Palavras-Chave #SECONDARY ORGANIC AEROSOL #PONDEROSA PINE PLANTATION #SIERRA-NEVADA MOUNTAINS #AMAZON RAIN-FOREST #MASS-SPECTROMETER #DRY DEPOSITION #PHASE CHEMISTRY #DUTCH HEATHLAND #EXCHANGE FLUXES #HIGH-RESOLUTION
Tipo

article

original article

publishedVersion