988 resultados para Directly modulated feedback
Resumo:
The influence of climate of transfer and trainees' personality on transfer behavior is studied systematically by using interview, questionnaire survey and on-the-spot experiment. The results are: 1, The climate of transfer of training influences directly the frequency of transfer behavior. Time and leaders' positive feedback can discriminate between different levels of transfer behavior. 2, Trainees' idea of the applicability of training programs can influence directly the frequency of transfer behavior. In the meantime, trainees' idea of the applicability of training programs is influenced directly by zero feedback, his flexibility and self-efficacy. 3, Zero feedback, time support and colleagues' support can discriminate between different type of climate of transfer of training. In different type of climate, the percent of trainees showing different level of transfer behavior is significant different.
Resumo:
Background: Ototoxicity is a known side effect of combined radiation therapy and cisplatin chemotherapy for the treatment of medulloblastoma. the delivery of an involved field boost by intensity modulated radiation therapy (IMRT) may reduce the dose to the inner ear when compared with conventional radiotherapy. the dose of cisplatin may also affect the risk of ototoxicity. A retrospective study was performed to evaluate the impact of involved field boost using IMRT and cisplatin dose on the rate of ototoxicity.Methods: Data from 41 medulloblastoma patients treated with IMRT were collected. Overall and disease-free survival rates were calculated by Kaplan-Meier method Hearing function was graded according to toxicity criteria of Pediatric Oncology Group (POG). Doses to inner ear and total cisplatin dose were correlated with hearing function by univariate and multivariate data analysis.Results: After a mean follow-up of 44 months (range: 14 to 72 months), 37 patients remained alive, with two recurrences, both in spine with CSF involvement, resulting in a disease free-survival and overall survival of 85.2% and 90.2%, respectively. Seven patients (17%) experienced POG Grade 3 or 4 toxicity. Cisplatin dose was a significant factor for hearing loss in univariate analysis (p < 0.03). in multivariate analysis, median dose to inner ear was significantly associated with hearing loss (p < 0.01). POG grade 3 and 4 toxicity were uncommon with median doses to the inner ear bellow 42 Gy (p < 0.05) and total cisplatin dose of less than 375 mg/m(2) (p < 0.01).Conclusions: IMRT leads to a low rate of severe ototoxicity. Median radiation dose to auditory apparatus should be kept below 42 Gy. Cisplatin doses should not exceed 375 mg/m(2).
Resumo:
Academic feedback is taken here as the reporting to student writers of the strengths and weaknesses of their submitted draft work, while academic feedforward refers to constructive advice regarding possible strengthening of students’ next work. Both originate from a tutor’s initial judgement of a student’s work. Feedback and feedforward on work showing need for improvement are problematic in a Confucian Heritage Culture. Even gently constructive advice within a programme seeking evidence for assessment of critical thinking may lead to perception of hurtful criticism by Taiwanese students. Some could withdraw from class activity accordingly. So the writers adjusted their response style. They now choose between different approaches featuring tutorial feedback or feedforward, depending on the standard of work being judged. When individual postings feature poor critical thinking, the writers opt for private messages concentrating on constructive feedforward. For better postings, they provide positive feedback with reasons for their judgements, and summarise to the class these exemplars of generic strengths in critical thinking. They also offer private prompting when they see scope for further enrichment of an able student’s critical thinking. This might also be a useful practice when tutoring solely in the West. (192 words) Keywords: Confucian Heritage Culture, public feedback, private feedforward, assessment
Resumo:
A major theme of this book is that feedback should encourage dialogue; between students and lecturers, amongst peers and individually, as a form of self-critique and reflection. Here we endorse that theme but also propose an understanding of dialogue that goes beyond simple exchang or the presence of two or more voices. Inspired by Freire’s (1996) critical pedagogy we seek to make a link between the social nature of learning, the social nature of dialogue and the role of feedback as dialogue in a broader transformative learning process, and not merely as an adjunct to assessment.
Resumo:
Seven regional networking events, aimed at supporting and developing ‘early stage’ novice university bioscience teachers were held across the UK. These workshops allowed 230 participants to reflect on teaching styles, learn about Higher Education Academy resources and discuss strategies to deal with a range of teaching situations. Post-event feedback was sought, and the results are presented in this paper. Feedback on the events was overwhelmingly positive, highlighting the need for such events to support the development of new teachers in higher education. Institutional training varies and these opportunities for sharing experiences, asking questions, networking and reflection on teaching practice were highly regarded. Most participants felt more confident about their teaching and believed that students were more directly engaged in their teaching after attending the events. Recommendations for support of this category of teacher include provision of discipline-specific events, opportunity for local area networking and support for the development of reflective practice in teaching and learning.
Resumo:
The setting, marking and providing feedback on assessments forms an important part of a tutor’s role. Studies into the use of feedback and how it is interpreted by students indicate a mismatch between what students are looking for and what tutors think they are giving. Tutors comment that students are more interested in the mark than the feedback, and yet students indicate that they do not get enough feedback, or that it is not useful. This study investigates student and staff perceptions of the linking of marking and feedback in face-to-face sessions. A cohort of year one university students were given the option of receiving either written feedback or a 15 minute meeting with one of their tutors to have their essay marked with them. Forty nine students chose face-to-face marking, the remaining 35 students received written feedback. Focus groups were used to investigate the student experience. Staff members were also asked to reflect on the process. Students and staff found the experience of face-to-face marking beneficial and positive. Both felt that the time spent together allowed for a feedback dialogue about the piece of work, and that staff could explain and justify why marks were given.
Resumo:
Gough, John; Belavkin, V.P.; Smolianov, O.G., (2005) 'Hamilton?Jacobi?Bellman equations for quantum optimal feedback control', Journal of Optics B: Quantum and Semiclassical Optics 7 pp.S237-S244 RAE2008
Resumo:
Malignant or benign tumors may be ablated with high‐intensity focused ultrasound (HIFU). This technique, known as focused ultrasound surgery (FUS), has been actively investigated for decades, but slow to be implemented and difficult to control due to lack of real‐time feedback during ablation. Two methods of imaging and monitoring HIFU lesions during formation were implemented simultaneously, in order to investigate the efficacy of each and to increase confidence in the detection of the lesion. The first, Acousto‐Optic Imaging (AOI) detects the increasing optical absorption and scattering in the lesion. The intensity of a diffuse optical field in illuminated tissue is mapped at the spatial resolution of an ultrasound focal spot, using the acousto‐optic effect. The second, Harmonic Motion Imaging (HMI), detects the changing stiffness in the lesion. The HIFU beam is modulated to force oscillatory motion in the tissue, and the amplitude of this motion, measured by ultrasound pulse‐echo techniques, is influenced by the stiffness. Experiments were performed on store‐bought chicken breast and freshly slaughtered bovine liver. The AOI results correlated with the onset and relative size of forming lesions much better than prior knowledge of the HIFU power and duration. For HMI, a significant artifact was discovered due to acoustic nonlinearity. The artifact was mitigated by adjusting the phase of the HIFU and imaging pulses. A more detailed model of the HMI process than previously published was made using finite element analysis. The model showed that the amplitude of harmonic motion was primarily affected by increases in acoustic attenuation and stiffness as the lesion formed and the interaction of these effects was complex and often counteracted each other. Further biological variability in tissue properties meant that changes in motion were masked by sample‐to‐sample variation. The HMI experiments predicted lesion formation in only about a quarter of the lesions made. In simultaneous AOI/HMI experiments it appeared that AOI was a more robust method for lesion detection.
Resumo:
With the increased use of "Virtual Machines" (VMs) as vehicles that isolate applications running on the same host, it is necessary to devise techniques that enable multiple VMs to share underlying resources both fairly and efficiently. To that end, one common approach is to deploy complex resource management techniques in the hosting infrastructure. Alternately, in this paper, we advocate the use of self-adaptation in the VMs themselves based on feedback about resource usage and availability. Consequently, we define a "Friendly" VM (FVM) to be a virtual machine that adjusts its demand for system resources, so that they are both efficiently and fairly allocated to competing FVMs. Such properties are ensured using one of many provably convergent control rules, such as AIMD. By adopting this distributed application-based approach to resource management, it is not necessary to make assumptions about the underlying resources nor about the requirements of FVMs competing for these resources. To demonstrate the elegance and simplicity of our approach, we present a prototype implementation of our FVM framework in User-Mode Linux (UML)-an implementation that consists of less than 500 lines of code changes to UML. We present an analytic, control-theoretic model of FVM adaptation, which establishes convergence and fairness properties. These properties are also backed up with experimental results using our prototype FVM implementation.
Resumo:
ImageRover is a search by image content navigation tool for the world wide web. The staggering size of the WWW dictates certain strategies and algorithms for image collection, digestion, indexing, and user interface. This paper describes two key components of the ImageRover strategy: image digestion and relevance feedback. Image digestion occurs during image collection; robots digest the images they find, computing image decompositions and indices, and storing this extracted information in vector form for searches based on image content. Relevance feedback occurs during index search; users can iteratively guide the search through the selection of relevant examples. ImageRover employs a novel relevance feedback algorithm to determine the weighted combination of image similarity metrics appropriate for a particular query. ImageRover is available and running on the web site.
Resumo:
A system for recovering 3D hand pose from monocular color sequences is proposed. The system employs a non-linear supervised learning framework, the specialized mappings architecture (SMA), to map image features to likely 3D hand poses. The SMA's fundamental components are a set of specialized forward mapping functions, and a single feedback matching function. The forward functions are estimated directly from training data, which in our case are examples of hand joint configurations and their corresponding visual features. The joint angle data in the training set is obtained via a CyberGlove, a glove with 22 sensors that monitor the angular motions of the palm and fingers. In training, the visual features are generated using a computer graphics module that renders the hand from arbitrary viewpoints given the 22 joint angles. We test our system both on synthetic sequences and on sequences taken with a color camera. The system automatically detects and tracks both hands of the user, calculates the appropriate features, and estimates the 3D hand joint angles from those features. Results are encouraging given the complexity of the task.
Resumo:
The "teaching signal" that modulates reinforcement learning at cortico-striatal synapses may be a sequence composed of an adaptively scaled DA burst, a brief ACh burst, and a scaled ACh pause. Such an interpretation is consistent with recent data on cholinergic interneurons of the striatum are tonically active neurons (TANs) that respond with characteristic pauses to novel events and to appetitive and aversive conditioned stimuli. Fluctuations in acetylcholine release by TANs modulate performance- and learning- related dynamics in the striatum. Whereas tonic activity emerges from intrinsic properties of these neurons, glutamatergic inputs from thalamic centromedian-parafascicular nuclei, and dopaminergic inputs from midbrain are required for the generation of pause responses. No prior computational models encompass both intrinsic and synaptically-gated dynamics. We present a mathematical model that robustly accounts for behavior-related electrophysiological properties of TANs in terms of their intrinsic physiological properties and known afferents. In the model balanced intrinsic hyperpolarizing and depolarizing currents engender tonic firing, and glutamatergic inputs from thalamus (and cortex) both directly excite and indirectly inhibit TANs. If the latter inhibition, probably mediated by GABAergic NOS interneurons, exceeds a threshold, its effect is amplified by a KIR current to generate a prolongued pause. In the model, the intrinsic mechanisms and external inputs are both modulated by learning-dependent dopamine (DA) signals and our simulations revealed that many learning-dependent behaviors of TANs are explicable without recourse to learning-dependent changes in synapses onto TANs.
Resumo:
A four-channel neural pattern generator is described in which both the frequency and the relative phase of oscillations are controlled by a scalar arousal or GO signal. The generator is used to simulate quadruped gaits; in particular, rapid transitions are simulated in the order - walk, trot, pace, and gallop - that occurs in the cat. Precise switching control is achieved by using an arousal dependent modulation of the model's inhibitory interactions. This modulation generates a different functional connectivity in a single network at different arousal levels.
Resumo:
A neural network model of early visual processing offers an explanation of brightness effects often associated with illusory contours. Top-down feedback from the model's analog of visual cortical complex cells to model lateral geniculate nucleus (LGN) cells are used to enhance contrast at line ends and other areas of boundary discontinuity. The result is an increase in perceived brightness outside a dark line end, akin to what Kennedy (1979) termed "brightness buttons" in his analysis of visual illusions. When several lines form a suitable configuration, as in an Ehrenstein pattern, the perceptual effect of enhanced brightness can be quite strong. Model simulations show the generation of brightness buttons. With the LGN model circuitry embedded in a larger model of preattentive vision, simulations using complex inputs show the interaction of the brightness buttons with real and illusory contours.
Resumo:
The giant cholinergic interneurons of the striatum are tonically active neurons (TANs) that respond with characteristic pauses to novel events and to appetitive and aversive conditioned stimuli. Fluctuations in acetylcholine release by TANs modulate performance- and learning-related dynamics in the striatum. Whereas tonic activity emerges from intrinsic properties of these neurons, glutamatergic inputs from thalamic centromedian-parafascicular nuclei, and dopaminergic inputs from midbrain, are required for the generation of pause responses. No prior computational models encompass both intrinsic and synaptically-gated dynamics. We present a mathematical model that robustly accounts for behavior-related electrophysiological properties of TANs in terms of their intrinsic physiological properties and known afferents. In the model, balanced intrinsic hyperpolarizing and depolarizing currents engender tonic firing, and glutamatergic inputs from thalamus (and cortex) both directly excite and indirectly inhibit TANs. If the latter inhibition, presumably mediated by GABAergic interneurons, exceeds a threshold, its effect is amplified by a KIR current to generate a prolonged pause. In the model, the intrinsic mechanisms and external inputs are both modulated by learning-dependent dopamine (DA) signals and our simulations revealed that many learning-dependent behaviors of TANs are explicable without recourse to learning-dependent changes in synapses onto TANs. The "teaching signal" that modulates reinforcement learning at cortico-striatal synapses may be a sequence composed of an adaptively scaled DA burst, a brief ACh burst, and a scaled ACh pause. Such an interpretation is consistent with recent data on cholinergic control of LTD of cortical synapses onto striatal spiny projection neurons.