975 resultados para Dextransucrase assays
Resumo:
A novel electrochemiluminescence (ECL) aptasensor was proposed for sensitive and cost-effective detection of the target thrombin adopted an aptamer-based sandwich format. To detect thrombin, capture aptamers; labeled with gold nanoparticles (AuNPs) were first immobilized onto the thio-silanized ITO electrode surface through strong Au-S bonds. After catching the target thrombin, signal aptamers; tagged with ECL labels were attached to the assembled electrode surface. As a result, an AuNPs-capture-aptamer/thrombin/ECL-tagged signal-aptamer sandwich type was formed.
Resumo:
In vitro α-glycosidase inhibition assays and Ultrafiltration LC-DAD-ESI-MSn were combined to screening α-glucosidase inhibitors from hawthorn leaves flavonoids extract. As a result, hawthorn leaves flavonoids extract showed strong α-glucosidase inhibitory activity, four compounds presented α-glucosidase inhibitory effects were observed and identified by LC-DAD-MSn, and further confirmed by high resolution SORI-CID FT ICR MS data.
Resumo:
By using AuNP-modified homo-adenine DNA conjugate as a model system, simple colorimetric and resonance Rayleigh scattering assays have been developed for screening small molecules that trigger the formation of the non-Watson-Crick homo-adenine duplexes. The assay presented here is more simplified in format as it involves only one type of ssDNA modified Au-NP, and can be easily adapted to high-throughput screening.
Resumo:
Among various ECL systems, such as 9,10-diphenylanthracene, lucigenin, tris(2,2'-bipyridyl) ruthenium, peroxyoxalate, luminol, graphene, and nanocrystals, Ru(bpy)(3)(2+) ECL is one of the most widely studied ECL systems in recent years due to its broad applications in immunoassays, DNA probe assays, coreactants analysis, and aptasensors. In this review, the progress in Ru(bpy)(3)(2+) ECL has been summarized on the whole, and the future research trends have been proposed.
Resumo:
In vitro a-glucosidase inhibition assays and ultrafiltration liquid chromatography with photodiode array detection coupled to electrospray ionization tandem mass spectrometry (ultrafiltration LC-DAD-ESI-MSn) were combined to screen a-glucosidase inhibitors from hawthorn leaf flavonoids extract (HLFE). As a result, four compounds were identified as alpha-glucosidase inhibitors in the HLFE, and their structures were confirmed to be quercetin-3-O-rha-(1-4)-glc-rha and C-glycosylflavones (vitexin-2 ''-O-glucoside, vitexin-2 ''-O-rhamnoside and vitexin) by high-resolution sustained off resonance irradiation collision-induced dissociation (SORI-CID) data obtained by Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS).
Resumo:
A simple, sensitive fluorescent method for detecting cyanide has been developed based on the inner filter effect (IFE) of silver nanoparticles (Ag NPs). With a high extinction coefficient and tunable plasmon absorption feature, Ag NPs are expected to be a powerful absorber to tune the emission of the fluorophore in the IFE-based fluorescent assays. In the present work, we developed a turn-on fluorescent assay for cyanide based on the strong absorption of Ag NPs to both excitation and emission light of an isolated fluorescence indicator. In the presence of cyanide, the absorber Ag NPs will dissolve gradually, which then leads to recovery of the IFE-decreased emission of the fluorophore. The concentration of Ag NPs in the detection system was found to affect the fluorescence response toward cyanide greatly. Under the optimum conditions, the present IFE-based approach can detect cyanide ranging from 5.0 x 10 (7) to 6.0 x 10 (4) M with a detection limit of 2.5 x 10 (7) M, which is much lower than the corresponding absorbance-based approach and compares favorably with other reported fluorescent methods.
Resumo:
In this work, we reported both unlabeled and labeled sensing strategies for Ag(I) ions detection by using the DNA based gold nanoparticles (AuNPs) colorimetric method. In the unlabeled strategy, C-base riched single strand DNA (C-ssDNA) enwinded onto AuNPs to form AuNPs/C-ssDNA complex. In the labeled method, sulfhydryl group modified C-ssDNA (HS-C-ssDNA) was covalently labeled on AuNPs to produce AuNPs-S-C-ssDNA complex. In both strategies, C-ss DNA or HS-C-ssDNA could enhance the AuNPs stability against the salt-induced aggregation. However, the presence of Ag(I) ions in the obtained AuNPs/C-ssDNA or AuNPs-S-C-ssDNA complex would decrease such stability to display purple even blue colors due to the formation of Ag(I) ions mediated C-Ag(I)-C base pairs. Through this phenomenon, Ag(I) ions could be detected qualitatively and quantitatively using both unlabeled and labeled sensing strategies.
Resumo:
We introduce a fast and simple method, named the potentiostatic electrodeposition technique, to deposit metal particles on the planar surface for application in metal-enhanced fluorescence. The as-prepared metallic surfaces were comprised of silver nanostructures and displayed a relatively homogeneous morphology. Atomic force microscopy and UV-visible absorption spectroscopy were used to characterize the growth process of the silver nanostructures on the indium tin oxide (ITO) surfaces. A typical 20-fold enhancement in the intensity of a nearby fluorophore, [Ru(bpy)(3)](2+), could be achieved on the silvered surfaces. In addition, the photostability of [Ru(bpy)(3)](2+) was found to be greatly increased due to the modification of the radiative decay rate of the fluorophore. It is expected that this electrochemical approach to fabricating nanostructured metallic surfaces can be further utilized in enhanced fluorescence-based applications.
Resumo:
A Ru(bpy)(3)(2+)-doped silica nanoparticle-[Ru@Silica] modified indium tin oxide electrode was prepared by simple electrostatic self-assembly technique, and one-electron catalytic oxidation of guanine bases in double-strand and denatured DNA was realized using the electrochemiluminescence detection means.
Resumo:
The complex copolymer of hyperbranched polyethylenimine (PEI) with hydrophobic poly(gamma-benzyl L-glutamate) segment (PBLG) at their chain ends was synthesized. This water-soluble copolymer PEI-PBLG (PP) was characterized for DNA complexation (gel retardation assay, particle size, DNA release and DNase I protection), cell viability and in vitro transfection efficiency. The experiments showed that PP can effectively condense pDNA into particles. Size measurement of the complexes particles indicated that PP/DNA tended to form smaller nanoparticles than those of PEI/DNA, which was caused by the hydrophobic PBLG segments compressing the PP/DNA complex particles in aqueous solution. The representative average size of PP/DNA complex prepared using plasmid DNA (pEGFP-N1, pDNA) was about 96 nm. The condensed pDNA in the PP/pDNA complexes was significantly protected from enzymatic degradation by DNase1. Cytotoxicity studies by MTT colorimetric assays suggested that the PP had much lower toxicity than PEI. The in vitro transfection efficiency of PP/pDNA complexes improved a lot in HeLa cells, Vero cells and 293T cells as compared to that of PEI25K by the expression of Green Fluorescent Protein (GFP) as determined by flow cytometry. Thus, the water-soluble PP copolymer showed considerable potential as carriers for gene delivery.
Resumo:
An on-chip disk electrode based on sol-gel-derived carbon composite material could be easily and reproducibly fabricated. Unlike other carbon-based electrodes reported previously, this detector is rigid, convenient to fabricate, and amenable to chemical modifications. Based on the stable and reproducible characters of this detector, a copper particle-modified detector was developed for the detection of carbohydrates which extends the application of the carbon-based electrode. In our experiments, the performance of the new integrated detector for rapid on-chip measurement of epinephrine and glucose was illustrated. Experimental procedures including the fabrication of this detector, the configuration of separation channel outlet and electrode verge, and the performance characteristics of this new electrochemical detector were investigated.
Resumo:
We described here a new method for the determination of total calcium in plasma. The method is based on the precipitation of calcium with excess oxalate and the measurement of residual oxalate by flow injection analysis with Ru(bpy)(3)(2+) electrochemiluminescent detection. It has the advantages of extremely stable reagent, user-friendly instrument, high selectivity, good analytical recovery, wide dynamic range, and nice correlation with atomic absorption spectroscopy. The calibration plot for calcium is linear over a concentration range from 0.5 mmol L-1 to 4.8 mmol L-1, which is wider than those obtained by most other methods. The analytical recoveries for plasma calcium are 98.4-101.2% with coefficients of variation (CVs) of 1.96-2.52%. The within-day CVs range from 0.76% to 0.95%, and between-day CVs were from 1.12% to 1.46%. The time for each injection is one minute. Because the proposed method can be readily carried out on increasingly popular instruments for Ru(bpy)(3)(2+) ECL immunoassays and DNA probe assays, Ru(bpy)32+ ECL method is suitable for routine clinical analysis of calcium.
Resumo:
A new method for the fabrication of an integrated microelectrode for electrochemical detection (ECD) on an electrophoresis microchip is described. The pattern of the microelectrode was directly made on the surface of a microscope slide through an electroless deposition procedure. The surface of the slide was first selectively coated with a thin layer of sodium silicate through a micromolding in capillary technique provided by a poly(dimethylsiloxane) (PDMS) microchannel; this left a rough patterned area for the anchoring of catalytic particles. A metal layer was deposited on the pattern guided by these catalytic particles and was used as the working electrode. Factors influencing the fabrication procedure were discussed. The whole chip was built by reversibly sealing the slide to another PDMS layer with electrophoresis microchannels at room temperature. This approach eliminates the need of clean room facilities and expensive apparatus such as for vacuum deposition or sputtering and makes it possible to produce patterned electrodes suitable for ECD on microchip under ordinary chemistry laboratory conditions. Also once the micropattern is ready, it allows the researchers to rebuild the electrode in a short period of time when an electrode failure occurs. Copper and gold microelectrodes were fabricated by this technique. Glucose, dopamine, and catechol as model analytes were tested.
Resumo:
Two gadolinium polyoxometalates, K9GdW10O36 and K-11 [Gd(PW11O39)(2)], have been evaluated both in vivo and in vitro as candidates for tissue-specific MRI contrast agents. T-1-relaxivities of 6.89 mM(-1) . s(-1) for K9GdW10O36 and 5.27 mM(-1) . s(-1) for K-11[Gd(PW11O39)(2)] are slightly higher than that of the commercial MRI contrast agent (Gd-DTPA). Both compounds bind with bovine serum albumin and human serum transferrin and favorable liver-specific contrast enhancement in in vivo MRI with Sprague-Dawley rats after i.v. administration has been demonstrated. Imaging studies demonstrate that the two agents have a long residence time, showing MR signal enhancement in the liver for more than 40 min, longer than commercially available contrast agents. In vivo and in vitro assays showed that GdW10 and Gd(PW11)(2) are promising liver-specific MRI contrast agents and GdW10 may be used in the diagnosis of the pathological state. However, with the higher acute toxicity, the two gadolinium polyoxometalates need to be modified and studied further before clinical use.
Resumo:
The biosensor based on surface plasmon resonance(SPR) technology is a very useful tool to study the interaction between biomolecles. The main advantages of this technique is to "visualize" macromolecular interactions directly in real time, and in a label-free mode rather than indirect methods like enzyme-linked immunosorbent assays (ELISAs). We immobilize human serum albumin (HSA) to the carboxymethyldextran-modified sensor chip surface covalently to detect the activity of anti-HSA in serum, and regenerate the surface with .1 mol/L phosphoric acid. The results show that SPR biosensor can detect the activity of anti-HSA in real-time quickly and the sensor chip can be used over 100 cycles.