1000 resultados para De novo design
Resumo:
É registrada pela primeira vez a presença de Doradoblatta coppenamensis Bruijning, 1959 nos Estados do Amazonas e Mato Grosso (Brasil); são complementados os dados originais com a descrição e ilustração da genitália masculina da espécie, e são apresentadas considerações sobre o gênero.
Resumo:
In the present work the benefits of using graphics processing units (GPU) to aid the design of complex geometry profile extrusion dies, are studied. For that purpose, a3Dfinite volume based code that employs unstructured meshes to solve and couple the continuity, momentum and energy conservation equations governing the fluid flow, together with aconstitutive equation, was used. To evaluate the possibility of reducing the calculation time spent on the numerical calculations, the numerical code was parallelized in the GPU, using asimple programing approach without complex memory manipulations. For verificationpurposes, simulations were performed for three benchmark problems: Poiseuille flow, lid-driven cavity flow and flow around acylinder. Subsequently, the code was used on the design of two real life extrusion dies for the production of a medical catheter and a wood plastic composite decking profile. To evaluate the benefits, the results obtained with the GPU parallelized code were compared, in terms of speedup, with a serial implementation of the same code, that traditionally runs on the central processing unit (CPU). The results obtained show that, even with the simple parallelization approach employed, it was possible to obtain a significant reduction of the computation times.
Resumo:
Physical and physiological comfort, at work and during leisure time, is important to human health and motivation. A growing number of jobs require workers to sit. Most clothes, except those intended for wheelchair users, were designed for walking or the standing position. Clothing designs should be user-oriented and meet users’ needs. Garment design should conform to body position and posture, not just shape and size. In this paper we present the ergometric impact of a new type of trousers designed to adapt to changes in position. Concentrations of compression forces, temperature and pressure were documented in an exploratory pilot study and contrasted to traditional designs. The new trousers showed significant decreases in compression force concentration, especially in and around the knees and waist. Most participants identified comfort as an important factor when purchasing a pair of trousers and that, for working purposes, they would prefer these special trousers rather than traditional designs.
Resumo:
PhD thesis in Bioengineering
Resumo:
PhD thesis in Bioengineering
Resumo:
Tese de Doutoramento - Leaders for Technical Industries (LTI) - MIT Portugal
Resumo:
Doctoral Thesis Civil Engineering
Resumo:
É caracterizado um novo gênero neotropical de simulídeo, com base nas espécies previamente incluídas no "Grupo Siolii", do gênero Psaroniocompsa. Chaves de identificação para imaturos são apresentadas. O gênero Shelleyellum fica constituído pelas espécies: S. damascenoi (Py-Daniel,1988), S. guaporense (Py-Daniel, 1989), S. lourencoi (Py-Daniel, 1988), S. siolli (Py-Daniel, 1988), S. tergospinosum (Hamada, 2000). O gênero é caracterizado, principalmente, pela de carena longitudinal nos distímeros dos machos e a presença de tubérculos tegumentares nas larvas.
Resumo:
In this work, the optimization of an extrusion die designed for the production of a wood–plastic composite (WPC) decking profile is investigated. The optimization was performed with the help of numerical tools, more precisely, by solving the continuity and momentum conservation equations that govern such flow, and aiming to balance properly the flow distribution at the extrusion die flow channel outlet. To capture the rheological behavior of the material, we used a Bird-Carreau model with parameters obtained from a fit to the (shear viscosity versus shearrate) experimental data, collected from rheological tests. To yield a balanced output flow, several numerical runs were performed by adjusting the flow restriction at different regions of the flow-channel parallel zone crosssection. The simulations were compared with the experimental results and an excellent qualitative agreement was obtained, allowing, in this way, to attain a good balancing of the output flow and emphasizing the advantages of using numerical tools to aid the design of profile extrusion dies.
Resumo:
[Extrat] Thermoplastic profiles are very attractive due to their inherent design freedom. However, the usual methodologies employed to design extrusion forming tools, based on experimental based trial–and–error procedures, are highly dependent on the designer’s experience and lead to high resources consumption. Despite of the relatively low cost of the raw materials employed on the production of this type of profiles, the resources involved in the die design process significantly increase their cost. These difficulties are even more evident when a complex geometry profile has to be produced and there is no previous experience with similar geometries. Therefore, novel design approaches are required, in order to reduce the required resources and guarantee a good performance for the produced profile. (...)
Resumo:
Tese de Doutoramento em Ciências Jurídicas (área de especialização em Ciências Jurídicas - Públicas)
Resumo:
Shifting from chemical to biotechnological processes is one of the cornerstones of 21st century industry. The production of a great range of chemicals via biotechnological means is a key challenge on the way toward a bio-based economy. However, this shift is occurring at a pace slower than initially expected. The development of efficient cell factories that allow for competitive production yields is of paramount importance for this leap to happen. Constraint-based models of metabolism, together with in silico strain design algorithms, promise to reveal insights into the best genetic design strategies, a step further toward achieving that goal. In this work, a thorough analysis of the main in silico constraint-based strain design strategies and algorithms is presented, their application in real-world case studies is analyzed, and a path for the future is discussed.
Resumo:
Poly(vinylidene fluoride-co-chlorotrifluoroethylene) – P(VDF-CTFE) membranes are increasingly interesting for a wide range of applications, including battery separators, filtration membranes and biomedical applications. This work reports on the morphology, hydrophobicity, thermal and mechanical properties variation of P(VDF-CTFE) membranes processed by nonsolvent induced phase separation technique (NIPS) as a function of the main processing parameters. All membranes show a porous structure composed of large spherulites, (interconnected) micropores and/or microvoids depending on the processing conditions used that in turn affect their hydrophobicity and mechanical properties. The degree of crystallinity of the membranes remains approximately constant with a value of about 15 %, except for the membranes immediately immersed in ethanol, which is of about 23 %. In turn, the crystalline phases present in the copolymer is mainly affected by the temperature and nonsolvent characteristics of the coagulation bath, the β-phase content ranging from 33 to 100 %, depending on those processing parameters. It was show that the temperature of water-based coagulation bath plays an important role in order to produce structurally uniform and homogeneous porous membranes, which is particularly important from the point of view of technological applications.
Resumo:
There is an increasing interest in thin and flexible energy storage devices to meet modern society needs for applications such as, radio frequency sensing, interactive packaging and other consumer products. Printed batteries comply these requirements and are an excellent alternative to conventional batteries for many applications. Flexible and micro-batteries are also included in the area of printed batteries whenever fabricated by printing technologies. The main characteristics, advantages, disadvantages, developments, and printing techniques of printed batteries are presented and discussed in this review. The state-of-art takes into account both the research and industrial levels. In the academic one, the research progress of printed batteries is summarized divided in lithium-ion battery (Li-ion), zinc-manganese dioxide (Zn-MnO2), and other battery types with emphasis on the different materials for anode, cathode and separator as well as in the battery design. With respect to the industrial state-of-art, materials, device formulations and manufacturing techniques are presented. Finally, the prospects and challenges of printed batteries are discussed.
Resumo:
This work reports on the influence of the substrate polarization of electroactive β-PVDF on human adipose stem cells (hASCs) differentiation under static and dynamic conditions. hASCs were cultured on different β-PVDF surfaces (non-poled and “poled -”) adsorbed with fibronectin and osteogenic differentiation was determined using a quantitative alkaline phosphatase assay. “Poled -” β-PVDF samples promote higher osteogenic differentiation, which is even higher under dynamic conditions. It is thus demonstrated that electroactive membranes can provide the necessary electromechanical stimuli for the differentiation of specific cells and therefore will support the design of suitable tissue engineering strategies, such as bone tissue engineering.