998 resultados para Damage scenarios


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cellular response to radiation damage is made by a complex network of pathways and feedback loops whose spatiotemporal organization is still unclear despite its decisive role in determining the fate of the damaged cell. The single-cell approach and the high spatial resolution offered by microbeams provide the perfect tool to study and quantify the dynamic processes associated with the induction and repair of DNA damage. The soft X-ray microbeam has been used to follow the development of radiation induced foci in live cells by monitoring their size and intensity as a function of dose and time using yellow fluorescent protein (YFP) tagging techniques. Preliminary data indicate a delayed and linear rising of the intensity signal indicating a slow kinetic for the accumulation of DNA repair protein 53BP1. A slow and limited foci diffusion has also been observed. Further investigations are required to assess whatever such diffusion is consistent with a random walk pattern or if it is the result of a more structured lesion processing phenomenon. In conclusion, our data indicates that the use of microbeams coupled to live cell microscopy represent a sophisticated approach for visualizing and quantifying the dynamics changes of DNA proteins at the damaged sites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Radiotherapy employs ionizing radiation to induce lethal DNA lesions in cancer cells while minimizing damage to healthy tissues. Due to their pattern of energy deposition, better therapeutic outcomes can, in theory, be achieved with ions compared to photons. Antiprotons have been proposed to offer a further enhancement due to their annihilation at the end of the path. The work presented here aimed to establish and validate an experimental procedure for the quantification of plasmid and genomic DNA damage resulting from antiproton exposure. Immunocytochemistry was used to assess DNA damage in directly and indirectly exposed human fibroblasts irradiated in both plateau and Bragg peak regions of a 126 MeV antiproton beam at CERN. Cells were stained post irradiation with an anti-gamma-H2AX antibody. Quantification of the gamma-H2AX foci-dose relationship is consistent with a linear increase in the Bragg peak region. A qualitative analysis of the foci detected in the Bragg peak and plateau region indicates significant differences highlighting the different severity of DNA lesions produced along the particle path. Irradiation of desalted plasmid DNA with 5 Gy antiprotons at the Bragg peak resulted in a significant portion of linear plasmid in the resultant solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The majority of cemented femoral hip replacements fail as a consequence of loosening. One design feature that may affect loosening rates is implant surface finish. To determine whether or not surface finish effects fatigue damage accumulation in a bone cement mantle, we developed an experimental model of the implanted proximal femur that allows visualisation of damage growth in the cement layer. Five matt surface and five polished surface stems were tested. Pre-load damage and damage after two million cycles was measured. Levels of pre-load (shrinkage) damage were the same for both matt and polished stems; furthermore damage for matt vs. polished stems was not significantly different after two million cycles. This was due to the large variability in damage accumulation rates. Finite element analysis showed that the stress is higher for the polished (assumed debonded) stem, and therefore we must conclude that either the magnitude of the stress increase is not enough to appreciably increase the damage accumulation rate or, alternatively, the polished stem does not debond immediately from the cement. Significantly (P = 0.05) more damage was initiated in the lateral cement compared to the medial cement for both kinds of surface finish. It was concluded that, despite the higher cement stresses with debonded stems, polished prostheses do not provoke the damage accumulation failure scenario. (C) 2003 IPEM. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Residual stress due to shrinkage of polymethylmethacrylate bone cement after polymerisation is possibly one factor capable of initiating cracks in the mantle of cemented hip replacements. No relationship between residual stress and observed cracking of cement has yet been demonstrated. To investigate if any relationship exists, a physical model has been developed which allows direct observation of damage in the cement layer on the femoral side of total hip replacement. The model contains medial and lateral cement layers between a bony surface and a metal stem; the tubular nature of the cement mantle is ignored. Five specimens were prepared and examined for cracking using manual tracing of stained cracks, observed by transmission microscopy: cracks were located and measured using image analysis. A mathematical approach for the prediction of residual stress due to shrinkage was developed which uses the thermal history of the material to predict when stress-locking occurs, and estimates subsequent thermal stress. The residual stress distribution of the cement layer in the physical model was then calculated using finite element analysis. Results show maximum tensile stresses normal to the observed crack directions, suggesting a link between residual stress and preload cracking. The residual stress predicted depends strongly on the definition of the reference temperature for stress-locking. The highest residual stresses (4-7 MPa) are predicted for shrinkage from maximum temperature, in this case, magnitudes are sufficiently high to initiate cracks when the influence of stress raisers such as pores or interdigitation at the bone/cement interface are taken into account (up to 24 MPa when calculating stress around a pore according to the method of Harrigan and Harris (J. Biomech. 24(11) (1991) 1047-1058)). We conclude that the damage accumulation failure scenario begins before weight-bearing due to cracking induced by residual stress around pores or stress raisers. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cdk2 and cdk1 are individually dispensable for cell-cycle progression in cancer cell lines because they are able to compensate for one another. However, shRNA-mediated depletion of cdk1 alone or small molecule cdk1 inhibition abrogated S phase cell-cycle arrest and the phosphorylation of a subset of ATR/ATM targets after DNA damage. Loss of DNA damage-induced checkpoint control was caused by a reduction in formation of BRCA1-containing foci. Mutation of BRCA1 at S1497 and S1189/S1191 resulted in loss of cdk1-mediated phosphorylation and also compromised formation of BRCA1-containing foci. Abrogation of checkpoint control after cdk1 depletion or inhibition in non-small-cell lung cancer cells sensitized them to DNA-damaging agents. Conversely, reduced cdk1 activity caused more potent G2/M arrest in nontransformed cells and antagonized the response to subsequent DNA damage. Cdk1 inhibition may therefore selectively sensitize BRCA1-proficient cancer cells to DNA-damaging treatments by disrupting BRCA1 function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Decreased cerebral blood flow causes cognitive impairments and neuronal injury in vascular dementia. In the present study, we reported that donepezil, a cholinesterase inhibitor, improved transient global cerebral ischemia-induced spatial memory impairment in gerbils. Treatment with 5mg/kg of donepezil for 21 consecutive days following a 10-min period of ischemia significantly inhibited delayed neuronal death in the hippocampal CA1 region. In Morris water maze test, memory impairment was significantly improved by donepezil treatment. Western blot analysis showed that donepezil treatment prevented reductions in p-CaMKII and p-CREB protein levels in the hippocampus. These results suggest that donepezil attenuates the memory deficit induced by transient global cerebral ischemia and this neuroprotection may be associated with the phosphorylation of CaMKII and CERB in the hippocampus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Studies of the adverse neurobehavioral effects of maternal alcohol consumption on the fetus have been largely confined to the postnatal period, after exposure to alcohol has finished. This study explored the brain function of the fetus, at the time of exposure to alcohol, to examine its effect on information processing and stability of performance. Methods: Five groups of fetuses, defined by maternal alcohol consumption patterns, were examined: control (no alcohol); moderate (5 to 10 units/wk either drunk evenly across the week or as a binge, in 2 to 3 days); heavy (20+ units/wk drunk evenly or as a binge). Fetal habituation performance was examined on 3 occasions, separated by 7 days, beginning at 35 weeks of gestation. The number of trials required to habituate on each test session and the difference in performance across test sessions were recorded. Results: Fetuses exposed to heavy binge drinking required significantly more trials to habituate and exhibited a greater variability in performance across all test sessions than the other groups. Maternal drinking, either heavily but evenly or moderately as a binge, resulted in poorer habituation, and moderate binge drinking resulted in greater variability compared with no, or even, drinking. Conclusions: Decreased information processing, reflected by poorer habituation, and increased variability in performance may reflect the initial manifestations of structural damage caused by alcohol to the brain. These results will lead to a greater understanding of the effects of alcohol on the fetus's brain, enable the antenatal identification of fetal alcohol spectrum disorders, and lead to the early implementation of better management strategies. © 2012 by the Research Society on Alcoholism.


--------------------------------------------------------------------------------

Reaxys Database Information|

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The desorption of oligonucleotides by 3 mu m laser irradiation has been studied by laser induced fluorescence imaging of the resulting gas phase plumes. Fitting of the plume data has been achieved by using a modified Maxwell Boltzmann distribution which incorporates a range of stream velocities. Spatial density profiles, velocities and temperature variation have been determined from these fits indicating that the oligonucleotide plume only achieves a partial thermal relaxation. This laser desorption technique may provide a means of overcoming the limited mass range of gas phase biomolecules available from thermal evaporation techniques.