993 resultados para Cores


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We conducted an integrated paleomagnetic and rock magnetic study on cores recovered from Ocean Drilling Program Sites 1276 and 1277 of the Newfoundland Basin. Stable components of magnetization are determined from Cretaceous-aged sedimentary and basement cores after detailed thermal and alternating-field demagnetization. Results from a series of rock magnetic measurements corroborate the demagnetization behavior and show that titanomagnetites are the main magnetic carrier. In view of the normal polarity of magnetization and radiometric dates for the sills at Site 1276 (~98 and ~105 Ma, both within the Cretaceous Normal Superchron) and for a gabbro intrusion in peridotite at Site 1277 (~126 Ma, Chron M1), our results suggest that the primary magnetization of the Cretaceous rocks is likely retained in these rocks. The overall magnetic inclination of lithologic Unit 2 in Hole 1277A between 143 and 180 meters below seafloor is 38°, implying significant (~35° counterclockwise, viewed to the north) rotation of the basement around a horizontal axis parallel to the rift axis (010°). The paleomagnetic rotational estimates should help refine models for the tectonic evolution of the basement. The mean inclinations for Sites 1276 and 1277 rocks imply paleolatitudes of 30.3° ± 5.1° and 22.9° ± 12.0°, respectively, with the latter presumably influenced by tectonic rotation. These values are consistent with those inferred from the mid-Cretaceous reference poles for North America, suggesting that the inclination determinations are reliable and consistent with a drill site on a location in the North America plate since at least the mid-Cretaceous. The combined paleolatitude results from Leg 210 sites indicate that the Newfoundland Basin was some 1800 km south of its current position in the mid-Cretaceous. Assuming a constant rate of motion, the paleolatitude data would suggest a rate of 12.1 mm/yr for the interval from ~130 Ma (Site 1276 age) to present, and 19.6 mm/yr for the interval from 126 Ma (Site 1277 age) to recent. The paleolatitude and rotational data from this study are consistent with the possibility that Site 1276 may have passed over the Canary and Madeira hotspots that formed the Newfoundland Seamounts in the mid-Cretaceous.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several thin (1-10 cm) megascopic vitric tephras occur in the late Cenozoic calcareous oozes on Lord Howe Rise in the Tasman Sea and off eastern South Island, New Zealand. Of the 18 tephras analyzed 15 are silicic (75-78% SiO2) with abundant clear glass shards and a biotite ± hypersthene ± green hornblende ferromagnesian mineralogy. The Neogene silicic tephras were derived from the now-extinct Coromandel volcanic area in New Zealand, and the Quaternary ones from the presently active Central Volcanic Region of New Zealand. On the basis of glass chemistry and age, several of the Quaternary tephras are probably correlatives, and at least two can be matched to the major on-land Mt. Curl tephra (-0.25 m.y.). The occurrence of correlative silicic tephras both northwest and southeast of New Zealand may result from particularly violent eruptions, the ash below and above an altitude of -20 km being dispersed in opposite directions toward the Pacific Ocean and Tasman Sea, respectively. Ash drifting eastward into the southeasterly trade wind belt off northeastern New Zealand could also be carried into the central and northern Tasman Sea. Three megascopic tephras consist of altered basic shards and common labradorite crystals. They record Neogene explosive basaltic to andesitic activity from nearby ocean island or ridge sources in the Ontong-Java Plateau and Vanuatu regions. The megascopic tephras are a very incomplete and biased record of late Cenozoic explosive volcanism in the southwest Pacific because the innumerable, thin, green argillaceous layers in the cores (Gardner et al., this volume) probably represent devitrified intermediate to basic tephras derived mainly from oceanic arc volcanism along the Pacific/Australia plate boundary. In contrast to the New Zealand-derived silicic glass shards, the preservation potential of these more basic shards in Leg 90 calcareous sediments was low.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Paired radiocarbon measurements on haptophyte biomarkers (alkenones) and on co-occurring tests of planktic foraminifera (Neogloboquadrina dutertrei and Globogerinoides sacculifer) from late glacial to Holocene sediments at core locations ME0005-24JC, Y69-71P, and MC16 from the south-western and central Panama Basin indicate no significant addition of pre-aged alkenones by lateral advection. The strong temporal correspondence between alkenones, foraminifera and total organic carbon (TOC) also implies negligible contributions of aged terrigenous material. Considering controversial evidence for sediment redistribution in previous studies of these sites, our data imply that the laterally supplied material cannot stem from remobilization of substantially aged sediments. Transport, if any, requires syn-depositional nepheloid layer transport and redistribution of low-density or fine-grained components within decades of particle formation. Such rapid and local transport minimizes the potential for temporal decoupling of proxies residing in different grain-size fractions and thus facilitates comparison of various proxies for paleoceanographic reconstructions in this study area. Anomalously old foraminiferal tests from a glacial depth interval of core Y69-71P may result from episodic spillover of fast bottom currents across the Carnegie Ridge transporting foraminiferal sands towards the north.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

in preparation

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The upper shelf of the landslide-prone Ligurian Margin (Western Mediterranean Sea) off Nice well-known for the 1979 Airport Landslide is a natural laboratory to study preconditioning factors and trigger mechanisms for submarine landslides. For this study low-stress ring shear experiments have been carried out on a variety of sediments from >50 gravity cores to characterise the velocity-dependent frictional behaviour. Mean values of the peak coefficient of friction vary from 0.46 for clay-dominated samples (53 % clay, 46 % silt, 1 %) sand up to 0.76 for coarse-grained sediments (26 % clay, 57 % silt, 17 % sand). The majority of the sediments tested show velocity strengthening regardless of the grain size distribution. For clayey sediments the peak and residual cohesive strength increases with increasing normal stress, with values from 1.3 to 10.6 kPa and up to 25 % of all strength supported by cohesive forces in the shallowmost samples. A pseudo-static slope stability analysis reveals that the different lithologies (even clay-rich material with clay content >=50 %) tested are stable up to slope angles <26° under quasi-drained conditions.