948 resultados para Concord, Battle of, Concord, Mass., 1775.
Resumo:
A total of 449 plateau pika (Ochotona curzoniae Hudgson) individuals were sampled with rattraps from 21 plots (size 1 ha) randomly scattered over the area of the species distribution at the altitude 3275-4807 in a.s.l. in the Qinghai-Tibetan Plateau (West China). Two main ectoparasite species Hypoderma satyrus Brauer and Ixodes crenulatus Neumann of plateau pika were surveyed, and the relations between host sex and parasitism were analyzed. The results were: (i) although not significantly, the infection rate of female young was close to zero and lower than that of male young (6%), while the infection rate of female sub-adults (19%) was contrarily - higher than that of male sub-adults (11%); adult females had significantly higher (41%) infection rate than that of males (18%) (P<0.001); (ii) the parasite infection rates for both males and females increased with increasing age, but female age-groups had obviously steeper slope. We suggested that the differences of body mass, growth rate and home range between males and females had mainly caused the sex-biased parasitism (SBP) of plateau pika at each age stage. Also, due to the higher increases of body mass and maybe as well as of the home range differences between consecutive age-groups, the parasite infections of females became more sensitive to the influences of age than that of males.
Resumo:
The nucleoside analogue cordycepin (3'-deoxyodenosine, 3'-dA), one of the components of cordyceps militaris, has been shown to inhibit the growth of various tumor cells. However, the probable mechanism is still obscure. In this study, the inhibition of cell growth and changes in protein expression induced by cordycepin were investigated in BEL-7402 cells. Using the MTT assay and flow cytometry, we found that cordycepin inhibits cell viability and induces apoptosis in BEL 7402 cells. Additionally. the proteins were separated using two-dimensional polyacrylamide gel electrophoresis, and eight proteins were found to be significantly, affected by cordycepin compared to untreated control; among them, two were downregulated and six were upregulated. Of the eight proteins, six were identified with peptide mass fingerprinting using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) after in-gel trypsin digestion. These proteins are involved in various aspects of cellular metabolism. It is suggested that the effect of cordycepin on the growth of tumor cells is significantly related to the metabolism-associated protein expression induced by cordycepin. Copyright 2008 Prous Science, S.A.U. or its licensors. All rights reserved.
Resumo:
The botanical insecticide azadirachtin affects a variety of biological processes. Our early work indicated that protein level and type are significantly influenced by azadirachtin in pupae of Osttiniafumacalis (Guenee) (Lepidoptera: Crambidae) because a correlation exists between protein content and azadiraebtin concentration. By use of proteomic techniques, we analyzed changes in hemolymph protein expression of 48-h-old pupae in O. furnacalis induced by azadirachtin treatment. After feeding by third instars on an artificial diet containing 10 ppm azadirachtin until pupation, 48-b-old pupae were collected, and hemolymph protein samples were prepared. They were separated by two-dimensional polyacrylamide gel electrophoresis, and six proteins were significantly affected by azadiracbtin treatment compared with an untreated control. Two of these proteins were identified by database searching with peptide mass fingerprinting by using matrix-assisted laser desorption/ time-of-flight mass spectrometry after in-gel trypsin digestion. They belong to the insect apolipophorin-III and phospboribosyltransferase family, respectively. These two proteins may function on lipid metabolism in insect hemolymph. Furthermore, fat body is the center of synthesis and secretion of hemolymph proteins. We suggest that the azadirachtin exerts its insecticidal effects on the fat body of O. furnacalis by interfering with protein expression related to hemolymph lipid metabolism.
Resumo:
Survival of small mammals in winter requires proper adjustments in physiology, behavior and morphology. The present study was designed to examine the changes in serum leptin concentration and the molecular basis of thermogenesis in seasonally acclimatized root voles (Microtus oeconomus) from the Qinghai-Tibetan plateau. In January root voles had lower body mass and body fat mass coupled with higher nonshivering thermogenesis (NST) capacity. Consistently, cytochrome c oxidase activity and mitochondrial uncoupling protein-1 (UCP1) protein contents in brown adipose tissues were higher in January as compared to that in July. Circulating level of serum leptin was significantly lower in winter and higher in July. Correlation analysis showed that serum leptin levels were positively related with body mass and body fat mass while negatively correlated with UCP1 protein contents. Together, these data provided further evidence for our previous findings that root voles from the Qinghai-Tibetan plateau mainly depend on higher NST coupled with lower body mass to enhance winter survival. Further, fat deposition was significantly mobilized in cold winter and leptin was potentially involved in the regulation of body mass and thermogenesis in root voles. Serum leptin might act as a starvation signal in winter and satiety signal in summer.
Resumo:
The multi-photon ionization process of the hydrogen-bond cluster of pyridine-methanol has been investigated using a conventional and reflectron time-of-flight mass spectrometer (RTOF-MS) at 355 and 266 nm laser wavelengths, respectively. The sequences of the protonated cluster ions (CH3OH)(n)H+ and (C5H5Nn)(CH3OH)(m)H+ (n = 1,2) were observed at both laser wavelengths, while the sequence of the cluster ions (CH3)OHn (H2O)H+ was observed only at 355 nm laser wavelength. The difference between the relative signal intensities of the protonated methanol cluster ions at different laser wavelengths is attributed to different photoionization mechanisms. Some nascent cluster ions in metastable states dissociated during free flight to the detector. The dissociation kinetics is also discussed. (C) 2000 Elsevier Science B.V.
The ion-molecule reaction after multiphoton ionization in the binary cluster of ammonia and methanol
Resumo:
The binary cluster (CH3OH)(n)(NH3)(m) was studied by using a multiphoton ionization time-of-flight mass spectrometer (MPI-TOFMS). The measured two series of protonated cluster ions: (CH3OH)(n)H+ and (CH3OH)(n)NH4+ (1 less than or equal to n less than or equal to 14) were attributed to the ion-molecule reaction in the binary cluster ions. The mixed cluster of CH3OD with ammonia was also studied. The results implied that the proton transfer probability from the OD group was larger than that from CH3 group. The ab initio calculation of the binary cluster was carried out at the HF/STO-3G and MP2/6-31G** levels of theory, and indicated that the latter process of the proton transfer must overcome a barrier of similar to 29 kcal/mol. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Oxidized carbon nanotubes are tested as a matrix for analysis of small molecules by matrix assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS). Compared with nonoxidized carbon nanotubes, oxidized carbon nanotubes facilitate sample preparation because of their higher solubility in water. The matrix layer of oxidized carbon nanotubes is much more homogeneous and compact than that of nonoxidized carbon nanotubes. The efficiency of desorption/ionization for analytes and the reproducibility of peak intensities within and between sample spots are greatly enhanced on the surface of oxidized carbon nanotubes. The advantage of the oxidized carbon nanotubes in comparison with alpha-cyano-4-hydroxycinnamic acid (CCA) and carbon nanotubes is demonstrated by MALDI-TOF-MS analysis of an amino acid mixture. The matrix is successfully used for analysis of synthetic hydroxypropyl P-cyclodextrin, suggesting a great potential for monitoring reactions and for product quality control. Reliable quantitative analysis of jatrorrhizine and palmatine with a wide linear range (1-100 ng/mL) and good reproducibility of relative peak areas (RSD less than 10 %) is achieved using this matrix. Concentrations of jatrorrhizine (8.65 mg/mL) and palmatine (10.4 mg/mL) in an extract of Coptis chinensis Franch are determined simultaneously using the matrix and a standard addition method. (c) 2005 American Society for Mass Spectrometry.
Resumo:
The Coulomb explosion of ammonia clusters induced by nanosecond laser at 532 not with an intensity of similar to 10(12) Wcm(-2) has been studied by time of flight mass spectrometry. The dominant multiply charged ions are N3+ and N2+ with kinetic energies of 110 and 50 eV respectively. The electrons generated from the multiphoton ionization are heated through inverse bremsstrahlung by the laser field when colliding with neutral or ionic particles. When their energies surpass the corresponding ionization potentials of the molecules or ions, the subsequent electron impact ionization may take place thus resulting in multi-charged nitrogen ions. Covariance analysis is made to study the possible pathways of the Coulomb explosion.
Resumo:
The photoionization of methyl iodide beam seeded in argon and helium is studied by time-of-flight mass spectrometry using a 25 ns, 532 nm Nd-YAG laser with intensities in the range of 2 x 10(10)-2 x 10(11) W/cm(2). Multiply charged ions Of Iq+ (q = 2-3) and C2+ with tens of eV kinetic energies have been observed when laser interacts with the middle part of the pulsed molecular beam, whose peak profiles are independent on the laser polarization directions. Strong evidences show that these ions are coming from the Coulomb explosion of multiply charged CH3I clusters, and laser induced inverse bremsstrahlung absorption of caged electrons plays a key role in the formation of multiply charged ions. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Jones, R. A.; Breen, A. R.; Fallows, R. A.; Canals, A.; Bisi, M. M.; Lawrence, G. (2007). Interaction between coronal mass ejections and the solar wind, Journal of Geophysical Research, 112, Issue A8 RAE2008
Resumo:
Plakhov, A.Y., (2004) 'Precise solutions of the one-dimensional Monge-Kantorovich problem', Sbornik: Mathematics 195(9) pp.1291-1307 RAE2008
Resumo:
Enot, D. P., Beckmann, M., Overy, D., Draper, J. (2006). Predicting interpretability of metabolome models based on behavior, putative identity, and biological relevance of explanatory signals. Proceedings of the National Academy of Sciences of the USA, 103(40), 14865-14870. Sponsorship: BBSRC RAE2008
Resumo:
This article discusses the way in which the Chopin Year of 1910 was celebrated in Wielkopolska. It presents a script prepared in the nineteenth century and shows similarities with celebrations of Mickiewicz and other Polish heroes and artists. Invariably used in such commemorations was a “symbolic capital” that made it easier to create an intergenerational code, thereby disseminating knowledge of national culture and history. A significant role was played in 1910 by a centenary panel, which produced “Guidelines for popular Chopin celebrations” and also many occasional, popular materials. Chopin’s induction into the national pantheon involved the use of audio material (vocal and instrumental concerts), verbal material (articles, poems, lectures and brochures) and also a visual code (anniversary window stickers, tableaux vivants or tableaux illuminés). Illuminated pictures – recommended by a catalogue of slides produced in Poznań – stimulated the imagination of the masses and served as a guide through the composer’s life and work, and their impact was enhanced by a commentary. Most of the living pictures were probably inspired by Henryk Siemiradzki’s canvas Chopin grający na fortepianie w salonie księcia Radziwiłła [Chopin playing the piano in Prince Radziwiłł’s salon] and Józef Męcina Krzesz’s painting Ostatnie akordy Chopina [Chopin’s last chords]. This combination of codes made it possible to create a model adapted to the times and to the expectations of a mass audience. The Chopin anniversary, in which admiration was inseparably intertwined with manipulation, was a pretext for strengthening the national identity.
Resumo:
A detailed series of simulation chamber experiments has been performed on the atmospheric degradation pathways of the primary air pollutant naphthalene and two of its photooxidation products, phthaldialdehyde and 1-nitronaphthalene. The measured yields of secondary organic aerosol (SOA) arising from the photooxidation of naphthalene varied from 6-20%, depending on the concentrations of naphthalene and nitrogen oxides as well as relative humidity. A range of carbonyls, nitro-compounds, phenols and carboxylic acids were identified among the gas- and particle-phase products. On-line analysis of the chemical composition of naphthalene SOA was performed using aerosol time-of-flight mass spectrometry (ATOFMS) for the first time. The results indicate that enhanced formation of carboxylic acids may contribute to the observed increase in SOA yields at higher relative humidity. The photolysis of phthaldialdehyde and 1-nitronaphthalene was investigated using natural light at the European Photoreactor (EUPHORE) in Valencia, Spain. The photolysis rate coefficients were measured directly and used to confirm that photolysis is the major atmospheric loss process for these compounds. For phthaldialdehyde, the main gas-phase products were phthalide and phthalic anhydride. SOA yields in the range 2-11% were observed, with phthalic acid and dihydroxyphthalic acid identified among the particle phase products. The photolysis of 1-nitronaphthalene yielded nitric oxide and a naphthoxy radical which reacted to form several products. SOA yields in the range 57-71% were observed, with 1,4-naphthoquinone, 1-naphthol and 1,4-naphthalenediol identified in the particle phase. On-line analysis of the SOA generated in an indoor chamber using ATOFMS provided evidence for the formation of high-molecular-weight products. Further investigations revealed that these products are oxygenated polycyclic compounds most likely produced from the dimerization of naphthoxy radicals. These results of this work indicate that naphthalene is a potentially large source of SOA in urban areas and should be included in atmospheric models. The kinetic and mechanistic information could be combined with existing literature data to produce an overall degradation mechanism for naphthalene suitable for inclusion in photochemical models that are used to predict the effect of emissions on air quality.
Resumo:
In this work by employing numerical three-dimensional simulations we study the electrical performance and short channel behavior of several multi-gate transistors based on advanced SOI technology. These include FinFETs, triple-gate and gate-all-around nanowire FETs with different channel material, namely Si, Ge, and III-V compound semiconductors, all most promising candidates for future nanoscale CMOS technologies. Also, a new type of transistor called “junctionless nanowire transistor” is presented and extensive simulations are carried out to study its electrical characteristics and compare with the conventional inversion- and accumulation-mode transistors. We study the influence of device properties such as different channel material and orientation, dimensions, and doping concentration as well as quantum effects on the performance of multi-gate SOI transistors. For the modeled n-channel nanowire devices we found that at very small cross sections the nanowires with silicon channel are more immune to short channel effects. Interestingly, the mobility of the channel material is not as significant in determining the device performance in ultrashort channels as other material properties such as the dielectric constant and the effective mass. Better electrostatic control is achieved in materials with smaller dielectric constant and smaller source-to-drain tunneling currents are observed in channels with higher transport effective mass. This explains our results on Si-based devices. In addition to using the commercial TCAD software (Silvaco and Synopsys TCAD), we have developed a three-dimensional Schrödinger-Poisson solver based on the non-equilibrium Green’s functions formalism and in the framework of effective mass approximation. This allows studying the influence of quantum effects on electrical performance of ultra-scaled devices. We have implemented different mode-space methodologies in our 3D quantum-mechanical simulator and moreover introduced a new method to deal with discontinuities in the device structures which is much faster than the coupled-mode-space approach.