917 resultados para Collagen fibers
Resumo:
Purpose: To present 7 cases of peripheral sterile corneal infiltrates that occurred after corneal cross-linking (CXL) for progressive keratectasia. Methods: Seven patients who had their progressive keratoconus documented underwent corneal deepithelization and subsequently CXL, which was performed with the application of 0.1% riboflavin with 20% dextran, and exposure to UVA light (370 nm, 2.9-3.1 mW/cm(2)) for 30 minutes. Results: Nearly a week after the procedure, the patients presented with peripheral stromal infiltrates. The ring-like infiltrates were superficial and were present at the 9.0-mm zone. Sterile infiltration was diagnosed. Patients were treated with topical corticosteroids, and complete resolution was achieved after a few weeks of treatment. Conclusions: We hypothesize that the phototoxic effect on the corneal stroma may be the main mechanism that triggers these infiltrates. Alternatively, alterations in antigenicity that occur in native proteins after CXL could result in patients recognizing the proteins as nonself and mounting immune responses.
Resumo:
The replacement of phenol with sodium lignosulfonate and formaldehyde with glutaraldehyde in the preparation of resins resulted in a new resol-type phenolic resin, sodium lignosulfonate-glutaraldehyde resin, in addition to sodium lignosulfonate-formaldehyde and phenol-formaldehyde resins. These resins were then used to prepare thermosets and composites reinforced with sisal fibers. Different techniques were used to characterize raw materials and/or thermosets and composites, including inverse gas chromatography, thermogravimetric analysis, and mechanical impact and flexural tests. The substitution of phenol by sodium lignosulfonate in the formulation of the composite matrices increased the impact strength of the respective composites from approximately 400 Jm(-1) to 800 J m(-1) and 1000 J m(-1), showing a considerable enhancement from the replacement of phenol with sodium lignosulfonate. The wettability of the sisal fibers increased when the resins were prepared from sodium lignosulfonate, generating composites in which the adhesion at the fiber-matrix interface was stronger and favored the transference of load from the matrix to the fiber during impact. Results suggested that the composites experienced a different mechanism of load transfer from the matrix to the fiber when a bending load was applied, compared to that experienced during impact. The thermogravimetric analysis results demonstrated that the thermal stability of the composites was not affected by the use of sodium lignosulfonate as a phenolic-type reagent during the preparation of the matrices.
Resumo:
A nanocomposite based on bacterial cellulose (BC) and type I collagen (COL) was evaluated for in vitro bone regeneration. BC membranes were modified by glycine esterification followed by cross-linking of type I collagen employing 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide. Collagen incorporation was studied by spectroscopy analysis. X-Ray diffraction showed changes in the BC crystallinity after collagen incorporation. The elastic modulus and tensile strength for BC-COL decreased, while the strain at failure showed a slight increase, even after sterilization, as compared to pristine BC. Swelling tests and contact angle measurements were also performed. Cell culture experiments performed with osteogenic cells were obtained by enzymatic digestion of newborn rat calvarium revealed similar features of cell morphology for cultures grown on both membranes. Cell viability/proliferation was not different between BC and BC-COL membranes at day 10 and 14. The high total protein content and ALP activity at day 17 in cells cultured on BC-COL indicate that this composite allowed the development of the osteoblastic phenotype in vitro. Thus, BC-COL should be considered as alternative biomaterial for bone tissue engineering.
Resumo:
In this letter, we describe a simple and effective technique to prevent evaporation in liquid-core photonic crystal fibers (PCFs). The technique consists of using a micropipette to deploy a micro-droplet of an ultraviolet curable polymer adhesive in both core inputs. After it is cured, the adhesive creates sealing polymer plugs with quite satisfactory insertion loss (overall optical transmission of about 15%). Processed fibers remained liquid-filled for at least six weeks. From a practical point of view, we conducted a supercontinuum generation experiment in a water-core PCF to demonstrate a 120-minute spectral width stability and the ability to withstand at least 3-mW average power at the sealed fiber input. Similar experiments carried out with nonsealed fibers produced supercontinuum spectra lasting no longer than 10 minutes, with average powers kept below 0.5 mW to avoid thermally induced evaporation.
Resumo:
Abstract Background In this study the effect of myenteric denervation induced by benzalconium chloride (BAC) on distribution of fibrillar components of extracellular matrix (ECM) and inflammatory cells was investigated in gastric carcinogenesis induced by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). Rats were divided in four experimental groups: non-denervated (I) and denervated stomach (II) without MNNG treatment; non-denervated (III) and denervated stomachs (IV) treated with MNNG. For histopathological, histochemical and stereological analysis, sections of gastric fragments were stained with Hematoxylin-Eosin, Picrosirius-Hematoxylin, Gomori reticulin, Weigert's Resorcin-Fuchsin, Toluidine Blue and Alcian-Blue/Safranin (AB-SAF). Results BAC denervation causes an increase in the frequency of reticular and elastic fibers in the denervated (group II) compared to the non-denervated stomachs (group I). The treatment of the animals with MNNG induced the development of adenocarcinomas in non-denervated and denervated stomachs (groups III and IV, respectively) with a notable increase in the relative volume of the stroma, the frequency of reticular fibers and the inflammatory infiltrate that was more intense in group IV. An increase in the frequency of elastic fibers was observed in adenocarcinomas of denervated (group IV) compared to the non-denervated stomachs (group III) that showed degradation of these fibers. The development of lesions (groups III and IV) was also associated with an increase in the mast cell population, especially AB and AB-SAF positives, the latter mainly in the denervated group IV. Conclusions The results show a strong association in the morphological alteration of the ECM fibrillar components, the increased density of mast cells and the development of tumors induced by MNNG in the non-denervated rat stomach or denervated by BAC. This suggests that the study of extracellular and intracellular components of tumor microenvironment contributes to understanding of tumor biology by action of myenteric denervation.
Resumo:
Support structures for dermal regeneration are composed of biodegradable and bioresorbable polymers, animal skin or tendons, or are bacteria products. The use of such materials is controversial due to their low efficiency. An important area within tissue engineering is the application of multipotent mesenchymal stromal cells (MSCs) to reparative surgery. The combined use of biodegradable membranes with stem cell therapy may lead to promising results for patients undergoing unsuccessful conventional treatments. Thus, the aim of this study was to test the efficacy of using membranes composed of anionic collagen with or without the addition of hyaluronic acid (HA) as a substrate for adhesion and in vitro differentiation of bone marrow-derived canine MSCs. The benefit of basic fibroblast growth factor (bFGF) on the differentiation of cells in culture was also tested. MSCs were collected from dog bone marrow, isolated and grown on collagen scaffolds with or without HA. Cell viability, proliferation rate, and cellular toxicity were analyzed after 7 days. The cultured cells showed uniform growth and morphological characteristics of undifferentiated MSCs, which demonstrated that MSCs successfully adapted to the culture conditions established by collagen scaffolds with or without HA. This demonstrates that such scaffolds are promising for applications to tissue regeneration. bFGF significantly increased the proliferative rate of MSCs by 63% when compared to groups without the addition of the growth factor. However, the addition of bFGF becomes limiting, since it has an inhibitory effect at high concentrations in culture medium.
Resumo:
Resistance to corrosion, high tensile strength, low weight, easiness and rapidity of application, are characteristics that have contributed to the spread of the strengthening technique characterized by bonding of carbon fibers reinforced polymer (CFRP). This research aimed to develop an innovate strengthening method for RC beams, based on a high performance cement-based composite of steel fibers (macro + microfibers) to be applied as a transition layer. The purpose of this transition layer is better control the cracking of concrete and detain or even avoid premature debonding of strengthening. A preliminary study in short beams molded with steel fibers and strengthened with CFRP sheet, was carried out where was verified that the conception of the transition layer is valid. Tests were developed to get a cement-based composite with adequate characteristics to constitute the layer transition. Results showed the possibility to develop a high performance material with a pseudo strain-hardening behavior, high strength and fracture toughness. The application of the strengthening on the transition layer surface had significantly to improve the performance levels of the strengthened beam. It summary, it was proven the efficiency of the new strengthening technique, and much information can be used as criteria of projects for repaired and strengthened structures.
Resumo:
The cellular rheology has recently undergone a rapid development with particular attention to the cytoskeleton mechanical properties and its main components - actin filaments, intermediate filaments, microtubules and crosslinked proteins. However it is not clear what are the cellular structural changes that directly affect the cell mechanical properties. Thus, in this work, we aimed to quantify the structural rearrangement of these fibers that may emerge in changes in the cell mechanics. We created an image analysis platform to study smooth muscle cells from different arteries: aorta, mammary, renal, carotid and coronary and processed respectively 31, 29, 31, 30 and 35 cell image obtained by confocal microscopy. The platform was developed in Matlab (MathWorks) and it uses the Sobel operator to determine the actin fiber image orientation of the cell, labeled with phalloidin. The Sobel operator is used as a filter capable of calculating the pixel brightness gradient, point to point, in the image. The operator uses vertical and horizontal convolution kernels to calculate the magnitude and the angle of the pixel intensity gradient. The image analysis followed the sequence: (1) opens a given cells image set to be processed; (2) sets a fix threshold to eliminate noise, based on Otsu's method; (3) detect the fiber edges in the image using the Sobel operator; and (4) quantify the actin fiber orientation. Our first result is the probability distribution II(Δθ) to find a given fiber angle deviation (Δθ) from the main cell fiber orientation θ0. The II(Δθ) follows an exponential decay II(Δθ) = Aexp(-αΔθ) regarding to its θ0. We defined and determined a misalignment index α of the fibers of each artery kind: coronary αCo = (1.72 ‘+ or =’ 0.36)rad POT -1; renal αRe = (1.43 + or - 0.64)rad POT -1; aorta αAo = (1.42 + or - 0.43)rad POT -1; mammary αMa = (1.12 + or - 0.50)rad POT -1; and carotid αCa = (1.01 + or - 0.39)rad POT -1. The α of coronary and carotid are statistically different (p < 0.05) among all analyzed cells. We discussed our results correlating the misalignment index data with the experimental cell mechanical properties obtained by using Optical Magnetic Twisting Cytometry with the same group of cells.
Resumo:
Calcium tantalite (CaTa2O6) single crystal fibers were obtained by the laser-heated pedestal growth method (LHPG). At room temperature, this material can present three polymorphic modifications. The rapid crystallization inherent to the LHPG method produced samples within the Pm3 space group, with some chemical disorder. In order to check for polymorphic-induced transformations, the CaTa2O6 fibers have been submitted to different thermal treatments and investigated by micro-Raman spectroscopy. For short annealing times (15 min) at 1200 °C, the cubic modification was maintained, though with an improved crystalline quality, as evidenced by the enhanced inelastic scattered intensity (by ca. 250%) and narrowing of Raman bands. The polarized Raman spectra respected very well the predicted symmetries and the selection rules for this cubic modification. On the other hand, long annealing times (24 h) at 1200 °C led to a complete (irreversible) polymorphic transformation. The Raman bands became still more intense (ca. 15 times larger than for the as-grown fibers), narrower, and several new modes appeared. Also, the spectra became unpolarized, demonstrating a polycrystalline nature of the transformed crystals. The observed Raman modes could be fully assigned to an orthorhombic modification of CaTa2O6 belonging to the Pnma space group.
Resumo:
In dieser Arbeit wurden Zellkulturen primärer Hepatozyten von Ratte und Mensch hinsichtlich ihrer Eignung untersucht Speziesunterschiede der toxischen Wirkung und des Metabolismus von Substanzen darzustellen und inwieweit die in vitro-Ergebnisse in vivo vergleichbar bzw. übertragbar sind. Des Weiteren wurde ein Zellkulturmodell entwickelt, das eine Kultivierung von primären Hepatozyten aus Ratte, Mensch und Maus über einen Zeitraum von mindestens einer bis zwei Wochen erlaubt.rnrnDie Zellkulturen primärer Hepatozyten von Ratte und Mensch zeigten deutliche Unterschiede in der substanzinduzierten Veränderung der Genexpression nach Behandlung mit den, vor allem für den Menschen, lebertoxischen Substanzen Diclofenac und Troglitazon. Diese Unterschiede traten hauptsächlich in der Induktion fremdstoffmetabolisierender Enzyme sowie deren transkriptionsregulierenden Kernrezeptoren in den humanen Hepatozyten auf. Ebenso war eine verstärkte Stressantwort zu beobachten.rnDeutliche Speziesunterschiede konnten ebenso in der Wirkung der Arzneimittelentwicklungssubstanz EMD 392949 auf die Aktivität bzw. Genexpression von Cytochrom P450 Enzymen sowie deren Regulatoren nachgewiesen werden. Des Weiteren konnte hier eine sehr gute Übereinstimmung der Ergebnisse aus den Zellkulturen primärer Ratten- bzw. Humanhepatozyten mit jenen aus in vivo-Experimenten mit Ratten bzw. Affen (Macaca fascicularis) beobachtet werden, was die Aussagekraft der Primärkulturen verdeutlichte.rnDie große Übereinstimmung zwischen Enzymaktivität und Genexpression in der Induktion fremdstoffmetabolisierender Enzyme konnte durch die Behandlung mit einer Reihe speziesspezifischer Induktoren in Zellkulturen primärer Ratten- bzw. Humanhepatozyten bestätigt werden; vor allem nach dem von der amerikanischen Arzneimittelzulassungsbehörde (FDA, Food and Drug Administartion) vorgeschlagenen Bewertungsschema zur Untersuchung der CYP-Induktion.rnrnDie Lebensdauer sowie der Differenzierungsgrad von primären Hepatozyten in Kultur sind stark abhängig von den Zellkulturbedingungen. Durch diese Arbeit konnte gezeigt werden, dass spezifische Eigenschaften von Rattenleberzellen durch Kultivierung in einem Sandwich aus zwei hydratisierten Collagengelschichten und unter serumfreien Bedingungen für einen Zeitraum von mindestens zwei Wochen aufrechterhalten werden können. Dieses Kulturmodel konnte auf Primärhepatozyten von Mensch und Maus übertragen werden und erweitert die möglichen Anwendungen hin zu einer Behandlung über einen längeren Zeitraum und der Untersuchung von subchronischen Effekten.rn
Resumo:
Long-term disturbance of the calcium homeostasis of motor endplates (MEPs) causes necrosis of muscle fibers. The onset of morphological changes in response to this disturbance, particularly in relation to the fiber type, is presently unknown. Omohyoid muscles of mice were incubated for 1-30 minutes in 0.1 mM carbachol, an acetylcholine agonist that causes an inward calcium current. In these muscles, the structural changes of the sarcomeres and the MEP sarcoplasm were evaluated at the light- and electron-microscopic level. Predominantly in type I fibers, carbachol incubation resulted in strong contractures of the sarcomeres underlying the MEPs. Owing to these contractures, the usual beret-like form of the MEP-associated sarcoplasm was deformed into a mushroom-like body. Consequently, the squeezed MEPs partially overlapped the adjacent muscle fiber segments. There are no signs of contractures below the MEPs if muscles were incubated in carbachol in calcium-free Tyrode's solution. Carbachol induced inward calcium current and produced fiber-type-specific contractures. This finding points to differences in the handling of calcium in MEPs. Possible mechanisms for these fiber-type-specific differences caused by carbachol-induced calcium entry are assessed.
Resumo:
The aim of the present study is to evaluate the clinical and histologic healing of deep intrabony defects treated with guided tissue regeneration (GTR) with a collagen membrane from bovine pericardium and implantation of granular bovine bone biomaterial.
Resumo:
BACKGROUND: Premature collagen membrane degradation may compromise the outcome of osseous regenerative procedures. Tetracyclines (TTCs) inhibit the catalytic activities of human metalloproteinases. Preprocedural immersion of collagen membranes in TTC and systemic administration of TTC may be possible alternatives to reduce the biodegradation of native collagen membranes. AIM: To evaluate the in vivo degradation of collagen membranes treated by combined TTC immersion and systemic administration. MATERIALS AND METHODS: Seventy-eight bilayered porcine collagen membrane disks were divided into three groups and were immersed in 0, 50, or 100 mg/mL TTC solution. Three disks, one of each of the three groups, were implanted on the calvaria of each of 26 Wistar rats. Thirteen (study group) were administered with systemic TTC (10 mg/kg), while the remaining 13 received saline injections (control group). Calvarial tissues were retrieved after 3 weeks, and histological sections were analyzed by image analysis software. RESULTS: Percentage of remaining collagen area within nonimpregnated membranes was 52.26 ± 20.67% in the study group, and 32.74 ± 13.81% in the control group. Immersion of membranes in 100 mg/mL TTC increased the amount of residual collagen to 63.46 ± 18.19% and 42.82 ± 12.99% (study and control groups, respectively). Immersion in 50 mg/mL TTC yielded maximal residual collagen values: 80.75 ± 14.86% and 59.15 ± 8.01% (study and control groups, respectively). Differences between the TTC concentrations, and between the control and the study groups were statistically significant. CONCLUSIONS: Immersion of collagen membranes in TTC solution prior to their implantation and systemic administration of TTC significantly decreased the membranes' degradation.
Resumo:
In cartilage repair, bioregenerative approaches using tissue engineering techniques have tried to achieve a close resemblance to hyaline cartilage, which might be visualized using advanced magnetic resonance imaging.