988 resultados para Cognitive mapping
Resumo:
Amplified fragment length polymorphisms (AFLP) were used to study the inheritance of shell color in Argopecten irradians. Two scallops, one with orange and the other with white shells, were used as parents to produce four F-1 families by selfing and outcrossing. Eighty-eight progeny, 37 orange and 51 white, were randomly selected from one of the families for segregation and mapping analysis with AFLP and microsatellite markers. Twenty-five AFLP primer pairs were screened, yielding 1138 fragments, among which 148 (13.0%) were polymorphic in two parents and segregated in progeny. Six AFLP markers showed significant (P < 0.05) association with shell color. All six loci were mapped to one linkage group. One of the markers, F1f335, is completely linked to the gene for orange shell, which we designated as Orange1, without any recombination in the progeny we sampled. The marker was amplified in the orange parent and all orange progeny, but absent in the white parent and all the white progeny. The close linkage between F1f335 and Orange1 was validated using bulk segregation analysis in two natural populations, and all our data indicate that F1f335 is specific for the shell color gene, Orange1. The genomic mapping of a shell color gene in bay scallop improves our understanding of shell color inheritance and may contribute to the breeding of molluscs with desired shell colors.
Resumo:
Karyotype and chromosomal location of the major ribosomal RNA genes were studied in the hard clam (Mercenaria mercenaria Linnaeus) using fluorescence in situ hybridization (FISH). Metaphase chromosomes were obtained from early embryos. Internal transcribed spacers (ITS) between major RNA genes were amplified and used as FISH probes. The probes were labeled with digoxigenin-11-dUTP by polymerase chain reaction and detected with fluorescein-labeled anti-digoxigenin antibodies. FISH with the ITS probes produced two to four signals per nucleus or metaphase. M. mercenaria had a haploid number of 19 chromosomes with a karyotype of seven metacentric, four metacentric or submetacentric, seven submetacentric, and one submetacentric or subtelocentric chromosomes (7M + 4M/SM + 7SM + 1SM/ST). Two ITS loci were observed: one located near the centromere on the long arm of Chromosome 10 and the other at the telomere of the short arm of Chromosome 12. FISH signals on Chromosome 10 are strong and consistent, while signals on Chromosome 12 are variable. This study provides the first karyotype and chromosomal assignment of the major RNA genes in M. mercenaria. Similar studies in a wide range of species are needed to understand the role of chromosomal changes in bivalve evolution.
Resumo:
Chromosomal location of the major ribosomal RNA genes (rRNA) were studied in the dwarf surfclam (Mulinia lateralis, Say) using fluorescence in situ hybridization (FISH). FISH probes for the rRNA genes were made by polymerase chain reaction (PCR), labeled with digoxigenin-11-dUTP and detected with fluorescein-labeled antidigoxigenin antibodies. Mulinia lateralis had a diploid number of 38 chromosomes and all chromosomes were telocentric. FISH with the rRNA probe produced positive and consistent signals on two pairs of chromosomes: Chromosome 15 with a relative length of 4.6% and Chromosome 19, the shortest chromosome. Both loci were telomeric. The rRNA location provides the first physical landmark of the M. lateralis genome.
Resumo:
The VEGETATION (VGT) sensor in SPOT 4 has four spectral bands that are equivalent to Landsat Thematic Mapper (TM) bands (blue, red, near-infrared and mid-infrared spectral bands) and provides daily images of the global land surface at a 1-km spatial resolution. We propose a new index for identifying and mapping of snow ice cover, namely the Normalized Difference Snow/Ice Index (NDSII), which uses reflectance values of red and mid-infrared spectral bands of Landsat TM and VGT. For Landsat TM data, NDSII is calculated as NDSIITM =(TM3 -TM5)/(TM3 +TM5); for VGT data, NDSII is calculated as NDSIIVGT =(B2- MIR)/(B2 + MIR). As a case study we used a Landsat TM image that covers the eastern part of the Qilian mountain range in the Qinghai-Xizang (Tibetan) plateau of China. NDSIITM gave similar estimates of the area and spatial distribution of snow/ice cover to the Normalized Difference Snow Index (NDSI=(TM2-TM5)/(TM2+TM5)) which has been proposed by Hall et al. The results indicated that the VGT sensor might have the potential for operational monitoring and mapping of snow/ice cover from regional to global scales, when using NDSIIVGT.
Resumo:
The time-courses of orthographic, phonological and semantic processing of Chinese characters were investigated systematically with multi-channel event-related potentials (ERPs). New evidences concerning whether phonology or semantics is processed first and whether phonology mediates semantic access were obtained, supporting and developing the new concept of repetition, overlapping, and alternating processing in Chinese character recognition. Statistic parameter mapping based on physiological double dissociation has been developed. Seven experiments were conducted: I) deciding which type of structure, left-right or non-left-right, the character displayed on the screen was; 2) deciding whether or not there was a vowel/a/in the pronunciation of the character; 3) deciding which classification, natural object or non-natural object, the character was; 4) deciding which color, red or green, the character was; 5) deciding which color, red or green, the non-character was; 6) fixing on the non-character; 7) fixing on the crosslet. The main results are: 1. N240 and P240:N240 and P240 localized at occipital and prefrontal respectively were found in experiments 1, 2, 3, and 4, but not in experiments 5, 6, or 7. The difference between the former 4 and the latter 3 experiments was only their stimuli: the former's were true Chinese characters while the latter's were non-characters or crosslet. Thus Chinese characters were related to these two components, which reflected unique processing of Chinese characters peaking at about 240 msec. 2. Basic visual feature analysis: In comparison with experiment 7 there was a common cognitive process in experiments 1, 2, 4, and 6 - basic visual feature analysis. The corresponding ERP amplitude increase in most sites started from about 60 msec. 3. Orthography: The ERP differences located at the main processing area of orthography (occipital) between experiments 1, 2, 3, 4 and experiment 5 started from about 130 msec. This was the category difference between Chinese characters and non-characters, which revealed that orthographic processing started from about 130 msec. The ERP differences between the experiments 1, 2, 3 and the experiment 4 occurred in 210-250, 230-240, and 190-250 msec respectively, suggesting orthography was processed again. These were the differences between language and non-language tasks, which revealed a higher level processing than that in the above mentioned 130 msec. All the phenomena imply that the orthographic processing does not finished in one time of processing; the second time of processing is not a simple repetition, but a higher level one. 4. Phonology: The ERPs of experiment 2 (phonological task) were significantly stronger than those of experiment 3 (semantic task) at the main processing areas of phonology (temporal and left prefrontal) starting from about 270 msec, which revealed phonologic processing. The ERP differences at left frontal between experiment 2 and experiment 1 (orthographic task) started from about 250 msec. When comparing phonological task with experiment 4 (character color decision), the ERP differences at left temporal and prefrontal started from about 220 msec. Thus phonological processing may start before 220 msec. 5. Semantic: The ERPs of experiment 3 (semantic task) were significantly stronger than those of experiment 2 (phonological task) at the main processing areas of semantics (parietal and occipital) starting from about 290 msec, which revealed semantic processing. The ERP differences at these areas between experiment 3 and experiment 4 (character color decision) started from about 270 msec. The ERP differences between experiment 3 and experiment 1 (orthographic task) started from about 260 msec. Thus semantic processing may start before 260 msec. 6. Overlapping of phonological and semantic processing: From about 270 to 350 msec, the ERPs of experiment 2 (phonological task) were significantly larger than those of experiment 3 (semantic task) at the main processing areas of phonology (temporal and left prefrontal); while from about 290-360 msec, the ERPs of experiment 3 were significantly larger than those of experiment 2 at the main processing areas of semantics (frontal, parietal, and occipital). Thus phonological processing may start earlier than semantic and their time-courses may alternate, which reveals parallel processing. 7. Semantic processing needs part phonology: When experiment 1 (orthographic task) served as baseline, the ERPs of experiment 2 and 3 (phonological and semantic tasks) significantly increased at the main processing areas of phonology (left temporal and frontal) starting from about 250 msec. The ERPs of experiment 3, besides, increased significantly at the main processing areas of semantics (parietal and frontal) starting from about 260 msec. When experiment 4 (character color decision) served as baseline, the ERPs of experiment 2 and 3 significantly increased at phonological areas (left temporal and frontal) starting from about 220 msec. The ERPs of experiment 3, similarly, increased significantly at semantic areas (parietal and frontal) starting from about270 msec. Hence, before semantic processing, a part of phonological information may be required. The conclusion could be got from above results in the present experimental conditions: 1. The basic visual feature processing starts from about 60 msec; 2. Orthographic processing starts from about 130 msec, and repeats at about 240 msec. The second processing is not simple repetition of the first one, but a higher level processing; 3. Phonological processing begins earlier than semantic, and their time-courses overlap; 4. Before semantic processing, a part of phonological information may be required; 5. The repetition, overlapping, and alternating of the orthographic, phonological and semantic processing of Chinese characters could exist in cognition. Thus the problem of whether phonology mediates semantics access is not a simple, but a complicated issue.
Resumo:
This report mainly focused on methodology of spatiotemporal patterns (STP) of cognitive potentials or event-related potentials (ERP). The representation of STP of brain wave is an important issue in the research of neural assemblies. This paper described methods of parametric 3D head or brain modeling and its corresponding interpolation for functional imaging based on brain waves. The 3D interpolation method is an extension of cortical imaging technique. It can be used with transformed domain features of brain wave on realistic head or brain models. The simulating results suggests that it is a better method in comparison with the global nearest neighbor technique. A stable and definite STP of brainwave referred as microstate may become basic element for comprehending sophisticated cognitive processes. Fuzzy c-mean algorithm was applied to segmentation STPs of ERP into microstates and corresponding membership functions. The optimal microstate number was estimated with both the trends of objective function against increasing clustering number and the decorrelation technique base don microstate shape similarity. Comparable spatial patterns may occur at different moments in time with fuzzy indices and thus the serial processing limit generated from behavioral methods has been break through. High-resolution frequency domain analysis was carried out with multivariate autoregressive model. Bases on a 3D interpolation mentioned above, visualization of dynamical coordination of cerebral network was realized with magnitude-squared partial coherence. Those technique illustrated with multichannel ERP of 9 subjects when they undertook Strop task. Stroop effects involves several regions during post-perception stage with technique of statistical parameter mapping based F-test [SPM(F)]. As SPM(F) suggested task effects occurred within 100 ms after stimuli presentation involved several sensory regions, it may reflect the top-down processing effect.
Resumo:
Separate groups of rats with bilateral or unilateral lesions in septum were tested for acquisition and retention of the Morris water maze spatial cognitive task. Some of the animals in each lesion group received preoperative training in the task. Other animals in each group received no preoperative training. The results indicate that although both lesions lead to a spatial cognitive impairment in both the acquisition and retention of the task, the animals with bilateral lesions were more severely impaired than were the animals with unilateral, as indicated by quantitative measure. Searching strategies were used as an index to eximine the qualitative difference in the animals swim be havior, we found that the unilateral damaged animals still tend to use "mapping" strategies to solve the task as in the case of control groups but the accuracy is lower. The searching strategies used by the bilateral damaged animals showed complex patterns. The acquisition group with bilateral tend to use random and paratic strategies, however, the retention group with bilateral had a tendacy to use paratic and taxic strategies. The difference between searching strategies and its dynamic, change possibly suggest that other cognitive processing systems play an role in the processing of information about the task.
Resumo:
Trajectory Mapping "TM'' is a new scaling technique designed to recover the parameterizations, axes, and paths used to traverse a feature space. Unlike Multidimensional Scaling (MDS), there is no assumption that the space is homogenous or metric. Although some metric ordering information is obtained with TM, the main output is the feature parameterizations that partition the given domain of object samples into different categories. Following an introductory example, the technique is further illustrated using first a set of colors and then a collection of textures taken from Brodatz (1966).
Resumo:
This paper explores the relationships between a computation theory of temporal representation (as developed by James Allen) and a formal linguistic theory of tense (as developed by Norbert Hornstein) and aspect. It aims to provide explicit answers to four fundamental questions: (1) what is the computational justification for the primitive of a linguistic theory; (2) what is the computational explanation of the formal grammatical constraints; (3) what are the processing constraints imposed on the learnability and markedness of these theoretical constructs; and (4) what are the constraints that a linguistic theory imposes on representations. We show that one can effectively exploit the interface between the language faculty and the cognitive faculties by using linguistic constraints to determine restrictions on the cognitive representation and vice versa. Three main results are obtained: (1) We derive an explanation of an observed grammatical constraint on tense?? Linear Order Constraint??m the information monotonicity property of the constraint propagation algorithm of Allen's temporal system: (2) We formulate a principle of markedness for the basic tense structures based on the computational efficiency of the temporal representations; and (3) We show Allen's interval-based temporal system is not arbitrary, but it can be used to explain independently motivated linguistic constraints on tense and aspect interpretations. We also claim that the methodology of research developed in this study??oss-level" investigation of independently motivated formal grammatical theory and computational models??a powerful paradigm with which to attack representational problems in basic cognitive domains, e.g., space, time, causality, etc.
Resumo:
Meng, Q., & Lee, M. (2005). Novelty and Habituation: the Driving Forces in Early Stage Learning for Developmental Robotics. Wermter, S., Palm, G., & Elshaw, M. (Eds.), In: Biomimetic Neural Learning for Intelligent Robots: Intelligent Systems, Cognitive Robotics, and Neuroscience. (pp. 315-332). (Lecture Notes in Computer Science). Springer Berlin Heidelberg.
Resumo:
R.J. DOUGLAS, Non-existence of polar factorisations and polar inclusion of a vector-valued mapping. Intern. Jour. Of Pure and Appl. Math., (IJPAM) 41, no. 3 (2007).
Resumo:
G.R. BURTON and R.J. DOUGLAS, Uniqueness of the polar factorisation and projection of a vector-valued mapping. Ann. I.H. Poincare ? A.N. 20 (2003), 405-418.
Resumo:
Q. Meng and M. H. Lee, 'Construction of Robot Intra-modal and Inter-modal Coordination Skills by Developmental Learning', Journal of Intelligent and Robotic Systems, 48(1), pp 97-114, 2007.