Uniqueness of the polar factorisation and projection of a vector-valued mapping


Autoria(s): Douglas, Robert J.; Burton, G. R.
Contribuinte(s)

Institute of Mathematics & Physics (ADT)

Mathematical Modelling of Structures, Solids and Fluids

Data(s)

03/12/2007

03/12/2007

01/05/2003

Resumo

G.R. BURTON and R.J. DOUGLAS, Uniqueness of the polar factorisation and projection of a vector-valued mapping. Ann. I.H. Poincare ? A.N. 20 (2003), 405-418.

This paper proves some results concerning the polar factorisation of an integrable vector-valued function $u$ into the composition $u = u^{\#} \circ s$, where $u^{\#}$ is equal almost everywhere to the gradient of a convex function, and $s$ is a measure-preserving mapping. It is shown that the factorisation is unique (i.e. the measure-preserving mapping $s$ is unique) precisely when $u^{\#}$ is almost injective. Not every integrable function has a polar factorisation; we introduce a class of counterexamples. It is further shown that if $u$ is square integrable, then measure-preserving mappings $s$ which satisfy $u = u^{\#} \circ s$ are exactly those, if any, which are closest to $u$ in the $L^2$-norm.

Peer reviewed

Formato

14

Identificador

Douglas , R J & Burton , G R 2003 , ' Uniqueness of the polar factorisation and projection of a vector-valued mapping ' Annales de l'Institut Henri Poincar? (C) Analyse Non Lin?aire , vol 20 , no. 3 , pp. 405-418 . DOI: 10.1016/S0294-1449(02)00026-4

0294-1449

PURE: 73670

PURE UUID: 757ecf2a-2a49-411a-a8c9-07dfca59c994

dspace: 2160/380

http://hdl.handle.net/2160/380

http://dx.doi.org/10.1016/S0294-1449(02)00026-4

Idioma(s)

eng

Relação

Annales de l'Institut Henri Poincar? (C) Analyse Non Lin?aire

Tipo

/dk/atira/pure/researchoutput/researchoutputtypes/contributiontojournal/article

Direitos